cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002086 Number of circulant tournaments on 2n+1 nodes up to Cayley isomorphism.

Original entry on oeis.org

1, 1, 2, 4, 4, 6, 16, 16, 30, 88, 94, 208, 472, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 175104, 182362, 399480, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59660288, 89478656, 130150588, 390451576, 490853416, 954437292, 3435974656
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    IsLeastPoint[s_, f_] := Module[{t = f[s]}, While[t > s, t = f[t]]; s == t];
    C0[n_, k_] := Sum[Boole @ IsLeastPoint[u, Mod[#*k, n]&], {u, 1, n-1}]/2;
    IsBidrected[s_, r_, f_] := Module[{t = f[s]}, While[t != s && t != r, t = f[t]]; t == r];
    IsC[n_, k_] := Sum[Boole @ IsBidrected[u, n-u, Mod[#*k, n]&], {u, 1, n-1}] == 0;
    a[n_] := Module[{m = 2*n + 1}, Sum[If [GCD[m, k] == 1 && IsC[m, k], 2^C0[m, k], 0], {k, 1, m}]/EulerPhi[m]];
    Array[a, 40] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
  • PARI
    IsLeastPoint(s,f)={my(t=f(s));while(t>s,t=f(t));s==t}
    C(n,k)=sum(u=1,n-1,IsLeastPoint(u,v->v*k%n))/2;
    IsBidrected(s,r,f)={my(t=f(s));while(t<>s&&t<>r,t=f(t));t==r}
    IsC(n,k)=sum(u=1,n-1,IsBidrected(u,n-u,v->v*k%n))==0;
    a(n)=my(m=2*n+1);sum(k=1, m, if (gcd(m,k)==1 && IsC(m,k), 2^C(m,k),0))/eulerphi(m); \\ Andrew Howroyd, Sep 30 2017

Extensions

More terms from Roderick J. Fletcher, Oct 15 1996 (yylee(AT)mail.ncku.edu.tw)
Definition corrected by Andrew Howroyd, Apr 28 2017
Terms a(32) and beyond from Andrew Howroyd, Sep 30 2017