A002086 Number of circulant tournaments on 2n+1 nodes up to Cayley isomorphism.
1, 1, 2, 4, 4, 6, 16, 16, 30, 88, 94, 208, 472, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 175104, 182362, 399480, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59660288, 89478656, 130150588, 390451576, 490853416, 954437292, 3435974656
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323. See g(n) as defined on page 322 (NOT on page 317).
- B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323. [Annotated copy] See g(n) as defined on page 322 (NOT on page 317).
- Index entries for sequences related to tournaments
Programs
-
Mathematica
IsLeastPoint[s_, f_] := Module[{t = f[s]}, While[t > s, t = f[t]]; s == t]; C0[n_, k_] := Sum[Boole @ IsLeastPoint[u, Mod[#*k, n]&], {u, 1, n-1}]/2; IsBidrected[s_, r_, f_] := Module[{t = f[s]}, While[t != s && t != r, t = f[t]]; t == r]; IsC[n_, k_] := Sum[Boole @ IsBidrected[u, n-u, Mod[#*k, n]&], {u, 1, n-1}] == 0; a[n_] := Module[{m = 2*n + 1}, Sum[If [GCD[m, k] == 1 && IsC[m, k], 2^C0[m, k], 0], {k, 1, m}]/EulerPhi[m]]; Array[a, 40] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
-
PARI
IsLeastPoint(s,f)={my(t=f(s));while(t>s,t=f(t));s==t} C(n,k)=sum(u=1,n-1,IsLeastPoint(u,v->v*k%n))/2; IsBidrected(s,r,f)={my(t=f(s));while(t<>s&&t<>r,t=f(t));t==r} IsC(n,k)=sum(u=1,n-1,IsBidrected(u,n-u,v->v*k%n))==0; a(n)=my(m=2*n+1);sum(k=1, m, if (gcd(m,k)==1 && IsC(m,k), 2^C(m,k),0))/eulerphi(m); \\ Andrew Howroyd, Sep 30 2017
Extensions
More terms from Roderick J. Fletcher, Oct 15 1996 (yylee(AT)mail.ncku.edu.tw)
Definition corrected by Andrew Howroyd, Apr 28 2017
Terms a(32) and beyond from Andrew Howroyd, Sep 30 2017