cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049288 Number of nonisomorphic circulant tournaments, i.e., Cayley tournaments for cyclic group of order 2n-1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 16, 16, 30, 88, 94, 205, 457, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 174848, 182362, 399472, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59654816, 89478656, 130150588, 390451576, 490853416, 954437292
Offset: 1

Views

Author

Keywords

Comments

Further values for prime-squared orders can be found in A038789.
There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.

Crossrefs

Formula

a(n) <= A002086(n). - Andrew Howroyd, Apr 28 2017
a(n) = A002086(n) for squarefree 2n-1. - Andrew Howroyd, Apr 28 2017

Extensions

a(14)-a(37) from Andrew Howroyd, Apr 28 2017
Reference to Alspach (1970) corrected by Andrew Howroyd, Apr 28 2017

A002087 Number of point-symmetric tournaments with 2n+1 nodes.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 16, 16, 30
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002086, A049288 (note that A002086, A002087, A049288 are distinct sequences).

Extensions

Reference to Alspach (1970) corrected by Andrew Howroyd, Apr 28 2017

A000198 Largest order of automorphism group of a tournament with n nodes.

Original entry on oeis.org

1, 1, 3, 3, 5, 9, 21, 21, 81, 81, 81, 243, 243, 441, 1215, 1701, 1701, 6561, 6561, 6561, 45927, 45927, 45927, 137781, 137781, 229635, 1594323, 1594323, 1594323, 4782969, 4782969, 7971615, 14348907, 33480783, 33480783, 129140163, 129140163, 129140163
Offset: 1

Views

Author

Keywords

References

  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) local t, r; t:= irem(n, 9);
       `if`(3^ilog[3](n)=n, 3^((3^ilog[3](n)-1)/2),
       `if`(irem(n, 5, 'r')=0 and 3^ilog[3](r)=r, 5*3^((5*3^ilog[3](r)-5)/2),
       `if`(irem(n, 7, 'r')=0 and 3^ilog[3](r)=r, 7*3^((7*3^ilog[3](r)-5)/2),
       `if`(irem(n, 3, 'r')=0, 3^r*a(r),
       `if`(t in {1, 2, 4}, a(n-1),
       `if`(t = 8, max(a(n-1), a(5)*a(n-5)),
       `if`(t = 5, max(a(2)*a(n-2), a(5)*a(n-5), a(7)*a(n-7)),
            a(7)*a(n-7) )))))))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 29 2012
  • Mathematica
    a[n_] := a[n] = With[{t = Mod[n, 9]}, Which[ IntegerQ[Log[3, n]], 3^((1/2)*(n-1)),{q, r} = QuotientRemainder[n, 5]; r == 0 && IntegerQ[Log[3, q]], 5*3^((1/2)*(n-5)),{q, r} = QuotientRemainder[n, 7];r == 0 && IntegerQ[Log[3, q]], 7*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 3]; r == 0, 3^q*a[q],MemberQ[{1, 2, 4}, t], a[n-1],t == 8, Max[a[n-1], a[5]*a[n-5]], t == 5, Max[a[2]*a[n-2],a[5]*a[n-5], a[7]*a[n-7]],True, a[7]*a[n-7]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Nov 12 2012, after Alois P. Heinz *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000198(n):
        if n <= 7: return (1, 1, 3, 3, 5, 9, 21)[n-1]
        if (r:=n%9) in {0,3,6}:
            return 3**(m:=n//3)*A000198(m)
        elif r in {1,2,4}:
            return A000198(n-1)
        elif r == 5:
            return max(A000198(n-2),5*A000198(n-5),21*A000198(n-7))
        elif r == 7:
            return 21*A000198(n-7)
        elif r == 8:
            return max(A000198(n-1),5*A000198(n-5)) # Chai Wah Wu, Jul 01 2024

Formula

a(3^k) = 3^((3^k - 1)/2), a(5*3^k) = 5*3^((5*3^k - 5)/2), a(7*3^k) = 7*3^((7*3^k - 5)/2), and, for all other n, a(n) = max(a(i)a(n-i)) where the maximum is taken over 1 <= i <= n-1 (from Alspach and Berggren (1973) Theorem 4).
a(3r) = (3^r)a(r), a(n) = a(n-1) for n = 1, 2 or 4 mod 9, a(9k+8) = max(a(9k+7), a(5)a(9k+3)), a(9k+5) = max(a(2)a(9k+3), a(5)a(9k), a(7)a(9k-2)), a(9k+7) = a(7)a(9k) (from Alspach and Berggren (1973) Theorem 5).

Extensions

Edited and extended by Joseph Myers, Jun 28 2012
Showing 1-3 of 3 results.