cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049288 Number of nonisomorphic circulant tournaments, i.e., Cayley tournaments for cyclic group of order 2n-1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 16, 16, 30, 88, 94, 205, 457, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 174848, 182362, 399472, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59654816, 89478656, 130150588, 390451576, 490853416, 954437292
Offset: 1

Views

Author

Keywords

Comments

Further values for prime-squared orders can be found in A038789.
There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.

Crossrefs

Formula

a(n) <= A002086(n). - Andrew Howroyd, Apr 28 2017
a(n) = A002086(n) for squarefree 2n-1. - Andrew Howroyd, Apr 28 2017

Extensions

a(14)-a(37) from Andrew Howroyd, Apr 28 2017
Reference to Alspach (1970) corrected by Andrew Howroyd, Apr 28 2017

A002086 Number of circulant tournaments on 2n+1 nodes up to Cayley isomorphism.

Original entry on oeis.org

1, 1, 2, 4, 4, 6, 16, 16, 30, 88, 94, 208, 472, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 175104, 182362, 399480, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59660288, 89478656, 130150588, 390451576, 490853416, 954437292, 3435974656
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    IsLeastPoint[s_, f_] := Module[{t = f[s]}, While[t > s, t = f[t]]; s == t];
    C0[n_, k_] := Sum[Boole @ IsLeastPoint[u, Mod[#*k, n]&], {u, 1, n-1}]/2;
    IsBidrected[s_, r_, f_] := Module[{t = f[s]}, While[t != s && t != r, t = f[t]]; t == r];
    IsC[n_, k_] := Sum[Boole @ IsBidrected[u, n-u, Mod[#*k, n]&], {u, 1, n-1}] == 0;
    a[n_] := Module[{m = 2*n + 1}, Sum[If [GCD[m, k] == 1 && IsC[m, k], 2^C0[m, k], 0], {k, 1, m}]/EulerPhi[m]];
    Array[a, 40] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
  • PARI
    IsLeastPoint(s,f)={my(t=f(s));while(t>s,t=f(t));s==t}
    C(n,k)=sum(u=1,n-1,IsLeastPoint(u,v->v*k%n))/2;
    IsBidrected(s,r,f)={my(t=f(s));while(t<>s&&t<>r,t=f(t));t==r}
    IsC(n,k)=sum(u=1,n-1,IsBidrected(u,n-u,v->v*k%n))==0;
    a(n)=my(m=2*n+1);sum(k=1, m, if (gcd(m,k)==1 && IsC(m,k), 2^C(m,k),0))/eulerphi(m); \\ Andrew Howroyd, Sep 30 2017

Extensions

More terms from Roderick J. Fletcher, Oct 15 1996 (yylee(AT)mail.ncku.edu.tw)
Definition corrected by Andrew Howroyd, Apr 28 2017
Terms a(32) and beyond from Andrew Howroyd, Sep 30 2017
Showing 1-2 of 2 results.