cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002125 a(n) = Sum_{k=0..n} f(k)*f(n-k) where f(k) = A002124(k).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 3, 2, 6, 4, 9, 14, 11, 26, 29, 34, 62, 68, 99, 140, 169, 252, 322, 430, 607, 764, 1059, 1424, 1845, 2546, 3344, 4442, 6002, 7876, 10575, 14058, 18575, 24878, 32842, 43630, 58073, 76658, 101913, 134964, 178468, 236776, 312874, 414094, 547947, 723646
Offset: 0

Views

Author

Keywords

Comments

Arises in studying the Goldbach conjecture.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a002125 n = a002125_list !! n
    a002125_list = uncurry conv $ splitAt 1 a002124_list where
       conv xs (z:zs) = sum (zipWith (*) xs $ reverse xs) : conv (z:xs) zs
    -- Reinhard Zumkeller, Mar 21 2014
  • Maple
    M:=120; f:=array(0..M); f[0]:=1; f[1]:=0; f[2]:=0; for n from 3 to M do t1:=0; for k from 2 to n do p := ithprime(k); if p <= n then t1 := t1 + f[n-p]; fi; od: f[n]:=t1; od: # f is A002124
    A002125:=array(0..M); for n from 0 to M do A002125[n]:=add(f[t]*f[n-t],t=0..n); od: [seq(A002125[n],n=0..M)];
  • Mathematica
    CoefficientList[Series[1/(1 - Sum[x^Prime[k], {k, 2, 50}])^2, {x, 0, 50}], x] (* Indranil Ghosh, Apr 12 2017 *)

Formula

G.f.: 1/(1 - Sum_{k>=2} x^prime(k))^2. - Ilya Gutkovskiy, Apr 11 2017

Extensions

Edited by N. J. A. Sloane, Dec 03 2006