cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002128 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 22, 42, 81, 140, 231, 351, 551, 783, 1134, 1546, 2142, 2835, 3758, 4818, 6237, 7826, 9885, 12159, 14974, 18261, 22113, 26511, 31668, 37611, 44149, 52074, 60660, 70569, 81396, 94311, 107317, 123879, 140049, 160154, 179949, 204867, 228137
Offset: 6

Views

Author

Keywords

Comments

Number of partitions of n with three designated summands. For example: a(8) = 9 because there are 9 partitions of 8 with three designated summands: [5'+ 2'+ 1'], [4'+ 3'+ 1'], [4'+ 2'+ 1'+ 1], [4'+ 2'+ 1 + 1'], [3'+ 2'+ 2 + 1'], [3'+ 2 + 2'+ 1'], [3'+ 2'+ 1'+ 1 + 1], [3'+ 2'+ 1 + 1'+ 1], [3'+ 2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 25 2025

Examples

			x^6 + 3*x^7 + 9*x^8 + 22*x^9 + 42*x^10 + 81*x^11 + 140*x^12 + 231*x^13 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002127.
Column 3 of A385001.

Programs

  • PARI
    {a(n) = if( n<1, 0, (3*sigma(n,5) + (-30*n + 50)*sigma(n,3) + (40*n^2 - 100*n + 37)*sigma(n)) / 1920)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum(x^(n*i)/(1-x^n)^(2*i),n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+3, 6) * x^( k*(k+1) / 2 )) / (-7 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / (6!*7!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007