cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002133 Number of partitions of n with exactly two part sizes.

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 11, 13, 17, 22, 27, 29, 37, 44, 44, 55, 59, 68, 71, 81, 82, 102, 97, 112, 109, 136, 126, 149, 141, 168, 157, 188, 176, 212, 182, 231, 207, 254, 230, 266, 241, 300, 259, 319, 283, 344, 295, 373, 311, 386, 352, 417, 353, 452, 368, 460, 418, 492, 413
Offset: 1

Views

Author

Keywords

Comments

Also number of solutions to the Diophantine equation ab + bc + cd = n, with a,b,c >= 1. - N. J. A. Sloane, Jun 17 2011
A generalized sum of divisors function.

Examples

			a(8) = 13 because we have 71, 62, 611, 53, 5111, 422, 41111, 332, 3311, 311111, 22211, 221111, 2111111.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060177.
Cf. A002134.

Programs

  • Maple
    g:=sum(sum(x^(i+j)/(1-x^i)/(1-x^j),j=1..i-1),i=1..80): gser:=series(g,x=0,65): seq(coeff(gser,x^n),n=1..60); # Emeric Deutsch, Mar 30 2006
    with(numtheory); D00:=n->add(tau(j)*tau(n-j),j=1..n-1); L3:=n->(D00(n)+tau(n)-sigma(n))/2; [seq(L3(n),n=1..60)]; # N. J. A. Sloane, Jun 17 2011
    A002133 := proc(n)
        A055507(n-1)+numtheory[tau](n)-numtheory[sigma](n) ;
        %/2 ;
    end proc: # R. J. Mathar, Jun 15 2022
    # Using function P from A365676:
    A002133 := n -> P(n, 2, n): seq(A002133(n), n = 1..59); # Peter Luschny, Sep 15 2023
  • Mathematica
    nn=50;ss=Sum[Sum[x^(i+j)/(1-x^i)/(1-x^j),{j,1,i-1}],{i,1,nn}];Drop[CoefficientList[Series[ss,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 13 2012 *)
    Table[DivisorSigma[0, n] - DivisorSigma[1, n] + Sum[DivisorSigma[0, k]*DivisorSigma[0, n - k], {k, 1, n - 1}], {n, 1, 100}]/2 (* Vaclav Kotesovec, Aug 30 2025 *)
  • Python
    from sympy import divisor_count, divisor_sigma
    def A002133(n): return sum(divisor_count(j)*divisor_count(n-j) for j in range(1,(n-1>>1)+1)) + ((divisor_count(n+1>>1)**2 if n-1&1 else 0)+divisor_count(n)-divisor_sigma(n)>>1) # Chai Wah Wu, Sep 15 2023

Formula

G.f.: Sum_{i>=1} Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)). - Emeric Deutsch, Mar 30 2006
Andrews gives a formula which is programmed up in the Maple code below. - N. J. A. Sloane, Jun 17 2011
G.f.: (G(x)^2-H(x))/2 where G(x) = Sum_{k>0} x^k/(1-x^k) and H(x) = Sum_{k>0} x^(2*k)/(1-x^k)^2. More generally, we obtain g.f. for number of partitions of n with m types of parts if we substitute x(i) with -Sum_{k>0}(x^n/(x^n-1))^i in cycle index Z(S(m); x(1),x(2),...,x(m)) of symmetric group S(m) of degree m. - Vladeta Jovovic, Sep 18 2007