cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002180 Values taken by the half-totient function phi(m)/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 35, 36, 39, 40, 41, 42, 44, 46, 48, 50, 51, 52, 53, 54, 55, 56, 58, 60, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 92
Offset: 2

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002202, A079695 (complementary sequence).

Programs

  • Haskell
    a002180 = flip div 2 . a002202  -- Reinhard Zumkeller, Nov 22 2015
    
  • Maple
    with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 2 to 300 do if t1[n] <> 0 then t2 := [op(t2), n/2]; fi; od: t2;
  • Mathematica
    phiQ[m_] := Select[Range[m+1, 2 m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; Select[Range[2, 200], phiQ]/2 (* Jean-François Alcover, Jun 13 2012, after Maxim Rytin *)
  • PARI
    list(lim)=my(v=List()); for(n=1,lim, if(istotient(2*n), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Feb 08 2017

Formula

a(n) = A002202(n)/2 for n > 1.

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001