cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002184 a(n) = least primitive factor of 2^(2n+1) - 1.

Original entry on oeis.org

1, 7, 31, 127, 73, 23, 8191, 151, 131071, 524287, 337, 47, 601, 262657, 233, 2147483647, 599479, 71, 223, 79, 13367, 431, 631, 2351, 4432676798593, 103, 6361, 881, 32377, 179951, 2305843009213693951, 92737, 145295143558111, 193707721, 10052678938039, 228479, 439, 100801, 581283643249112959, 2687, 2593, 167
Offset: 0

Views

Author

Keywords

Comments

For n > 0, 2^(a(n)-2n-2) == 1 (mod a(n)), since 2^(a(n)-1) == 2^(2n+1) == 1 (mod a(n)). - Thomas Ordowski, Aug 11 2021
a(n) == 1 (mod 2n+1). - Thomas Ordowski, Aug 11 2021

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 84.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A112927(2n+1). - Max Alekseyev, Apr 26 2022

Extensions

More terms from Don Reble, Nov 14 2006