cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002191 Possible values for sum of divisors of n.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 24, 28, 30, 31, 32, 36, 38, 39, 40, 42, 44, 48, 54, 56, 57, 60, 62, 63, 68, 72, 74, 78, 80, 84, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 124, 126, 127, 128, 132, 133, 138, 140, 144, 150, 152, 156
Offset: 1

Views

Author

Keywords

Comments

Distinct values attained by the sigma(n) function, in ascending order.
The asymptotic density of this sequence is 0 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			a(100) = 272, a(10^3) = 3696, a(10^4) = 44496, a(10^5) = 510356, a(10^6) = 5691216. - _M. F. Hasler_, Nov 22 2019
		

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007369. A175192(a(n)) = 1, A054973(a(n)) >= 1. - Jaroslav Krizek, Mar 01 2010
See A083531 for the gaps, i.e., first differences. - M. F. Hasler, Mar 12 2018
Subsequence of A211347.

Programs

  • Maple
    N:= 1000: # to get all entries <= N
    select(`<=`,{seq(numtheory[sigma](i),i=1..N)},N); # Robert Israel, Jun 16 2014
  • Mathematica
    lim=1000; Select[Union[DivisorSigma[1,Range[lim]]], #<=lim &] (* T. D. Noe, May 06 2010 *)
  • PARI
    list(lim)=select(n->n<=lim,Set(vector(lim\=1,n,sigma(n)))) \\ Charles R Greathouse IV, Nov 12 2013
    
  • PARI
    A002191_upto(N,M=N\1+1)=Set(apply(t->min(sigma(t),M), [1..N\1-1]))[^-1] \\ Needs big stack for N >= 10^6; slower alternative: {A002191_upto(N)= my(L=List(1),s); for(n=2,N\=1,N<(s=sigma(n))||listput(L,s));Set(L)}
    A2191=A002191_upto(1e4); A002191(n)={#A2191A002191_upto(n*logint(n,10)+n); A2191[n]} \\ - M. F. Hasler, Nov 22 2019

Formula

a(n)/n < log_10(n) + O(1) with O(1) <= 1 for all n. - M. F. Hasler, Nov 22 2019