A002191 Possible values for sum of divisors of n.
1, 3, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 24, 28, 30, 31, 32, 36, 38, 39, 40, 42, 44, 48, 54, 56, 57, 60, 62, 63, 68, 72, 74, 78, 80, 84, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 124, 126, 127, 128, 132, 133, 138, 140, 144, 150, 152, 156
Offset: 1
Keywords
Examples
a(100) = 272, a(10^3) = 3696, a(10^4) = 44496, a(10^5) = 510356, a(10^6) = 5691216. - _M. F. Hasler_, Nov 22 2019
References
- J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 840.
- Ivan Niven, The asymptotic density of sequences, Bull. Amer. Math. Soc., Vol. 57 (1951), pp. 420-434.
- R. Sita Rama Chandra Rao and G. Sri Rama Chandra Murty, On a theorem of Niven, Canadian Mathematical Bulletin, Vol 22, No. 1 (1979), pp. 113-115.
Crossrefs
See A083531 for the gaps, i.e., first differences. - M. F. Hasler, Mar 12 2018
Subsequence of A211347.
Programs
-
Maple
N:= 1000: # to get all entries <= N select(`<=`,{seq(numtheory[sigma](i),i=1..N)},N); # Robert Israel, Jun 16 2014
-
Mathematica
lim=1000; Select[Union[DivisorSigma[1,Range[lim]]], #<=lim &] (* T. D. Noe, May 06 2010 *)
-
PARI
list(lim)=select(n->n<=lim,Set(vector(lim\=1,n,sigma(n)))) \\ Charles R Greathouse IV, Nov 12 2013
-
PARI
A002191_upto(N,M=N\1+1)=Set(apply(t->min(sigma(t),M), [1..N\1-1]))[^-1] \\ Needs big stack for N >= 10^6; slower alternative: {A002191_upto(N)= my(L=List(1),s); for(n=2,N\=1,N<(s=sigma(n))||listput(L,s));Set(L)} A2191=A002191_upto(1e4); A002191(n)={#A2191
A002191_upto(n*logint(n,10)+n); A2191[n]} \\ - M. F. Hasler, Nov 22 2019
Formula
a(n)/n < log_10(n) + O(1) with O(1) <= 1 for all n. - M. F. Hasler, Nov 22 2019
Comments