A002201 Superior highly composite numbers: positive integers n for which there is an e > 0 such that d(n)/n^e >= d(k)/k^e for all k > 1, where the function d(n) counts the divisors of n (A000005).
2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 13967553600, 321253732800, 2248776129600, 65214507758400, 195643523275200, 6064949221531200, 12129898443062400, 448806242393308800, 18401055938125660800, 791245405339403414400
Offset: 1
Examples
For n=2, 6 and 12 we may take e in the intervals (log(2)/log(3), 1], (log(3/2)/log(2), log(2)/log(3)] and (log(2)/log(5), log(3/2)/log(2)], respectively. Can the intervals in the previous line can be extended to include the left endpoints? - _Ant King_, May 02 2005
References
- J. L. Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988.
- S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.
- S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.
- S. Ramanujan, Highly Composite Numbers: Section IV, in 1) Collected Papers of Srinivasa Ramanujan, pp. 111-8, Ed. G. H. Hardy et al., AMS Chelsea 2000. 2) Ramanujan's Papers, pp. 143-150, Ed. B. J. Venkatachala et al., Prism Books Bangalore 2000.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Iain Fox, Table of n, a(n) for n = 1..400 (first 150 terms from T. D. Noe)
- Hirotaka Akatsuka, Maximal order for divisor functions and zeros of the Riemann zeta-function, arXiv:2411.19259 [math.NT], 2024. See p. 4.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 - 409.
- S. Ramanujan, IV: Superior Highly Composite Numbers
- S. Ratering, An interesting subset of the highly composite numbers, Math. Mag., 64 (1991), 343-346.
- Eric Weisstein's World of Mathematics, Superior Highly Composite Number
- Eric Weisstein's World of Mathematics, Colossally Abundant Number
- Wikipedia, Superior highly composite number
Crossrefs
Programs
-
Mathematica
Rest@ Union@ Array[Product[p^Floor[1/(p^(1/#) - 1)], {p, Prime@ Range@ PrimePi[2^#]}] &[Log@ #] &, 160] (* Michael De Vlieger, Jul 09 2019 *)
-
PARI
lista(nn)=my(p=primes(primepi(2^log(nn)))); setminus(Set(vector(nn, i, prod(n=1, primepi(2^log(i)), p[n]^floor(1/(p[n]^(1/log(i))-1))))), [1]) \\ Iain Fox, Aug 23 2020
Extensions
Better definition from T. D. Noe, Nov 05 2002
Comments