A000705 n-th superior highly composite number A002201(n) is product of first n terms of this sequence.
2, 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, 3, 5, 17, 19, 2, 23, 7, 29, 3, 31, 2, 37, 41, 43, 47, 5, 53, 59, 2, 11, 61, 3, 67, 71, 73, 79, 13, 83, 89, 2, 97, 101, 103, 107, 7, 109, 113, 17, 127, 131, 137, 139, 3, 5, 149, 151, 19, 2, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
Offset: 1
References
- S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 115.
- S. Ramanujan, Ramanujan's Papers, pp. 147-9, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543.
- S. Ramanujan, First 50 primes whose products form successive superior highly composite numbers
- Eric Weisstein's World of Mathematics, Superior Highly Composite Number
Programs
-
Mathematica
pFactor[f_List] := Module[{p = f[[1]], k = f[[2]]}, N[Log[(k + 2)/(k + 1)]/Log[p]]]; maxN = 100; f = {{2, 1}, {3, 0}}; primes = 1; lst = {2}; x = Table[pFactor[f[[i]]], {i, primes + 1}]; For[n = 2, n <= maxN, n++, i = Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i > primes, primes++; AppendTo[f, {Prime[i + 1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]] = pFactor[f[[i]]]]; lst (* T. D. Noe, Nov 01 2002 *)
Extensions
Edited by T. D. Noe, Nov 01 2002
Comments