cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002216 Harary-Read numbers: restricted hexagonal polyominoes (cata-polyhexes) with n cells.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 37, 123, 446, 1689, 6693, 27034, 111630, 467262, 1981353, 8487400, 36695369, 159918120, 701957539, 3101072051, 13779935438, 61557789660, 276327463180, 1245935891922, 5640868033058, 25635351908072, 116911035023017
Offset: 0

Views

Author

Keywords

Comments

Named after the American mathematician Frank Harary (1921-2005) and the British mathematician Ronald Cedric Read (1924-2019). - Amiram Eldar, Jun 22 2021

References

  • S. J. Cyvin, J. Brunvoll, X. F. Guo and F. J. Zhang, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., Vol. 38, No. 1 (1993), pp. 65-77.
  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem., Vol. 134, No. 1 (1997), pp. 55-70.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Wenchen He and Wenjie He, Generation and enumeration of planar polycyclic aromatic hydrocarbons, Tetrahedron, Vol. 42, No. 19 (1986), pp. 5291-5299. See Table 3.
  • J. V. Knop, K. Szymansky, Željko Jeričević and Nenad Trinajstić, On the total number of polyhexes, Match, Vol. 16 (1984), pp. 119-134.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer generation of isomeric structures, Pure & Appl. Chem., Vol. 55, No. 2 (1983), pp. 379-390.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(12+(1-5*x)^(3/2)*(1-x)^(3/2)+24*x-48*x^2- 24*x^3- 3*(3+5 x)*Sqrt[1-5*x^2]*Sqrt[1-x^2]-4*Sqrt[1-5*x^3]*Sqrt[1-x^3])/ (24*x^2),{x,0,40}],x] (* Harvey P. Dale, Dec 23 2013 *)

Formula

G.f.: (1/(24*x^2))*(12+24*x-48*x^2-24*x^3 +(1-x)^(3/2)*(1-5*x)^(3/2)-3*(3+5*x)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2) -4*(1-x^3)^(1/2)*(1-5*x^3)^(1/2)).
a(n) = (1/2)[A002214(n)+A002215(n)], n>=1. - Emeric Deutsch, Dec 23 2003
a(n) ~ 5^(n+1/2)/(4*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Aug 09 2013

A002213 Number of tree-like polyhexes rooted at a hexagon and containing n hexagons.

Original entry on oeis.org

1, 1, 5, 20, 84, 354, 1540, 6704, 29610, 131745, 591049, 2669346, 12131148, 55431285, 254539897, 1174027598, 5436826110, 25269402555, 117838870833, 551192276450, 2585418254532, 12158383558066, 57313008207960
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

G.f.: x + x*U(x) + (3/2)*x*U(x)^2 + (1/2)*x*U(x^2) + (1/3)*x*U(x)^3 + (2/3)*x*U(x^3), where U(x) = (1 - 3*x - sqrt((1-x)*(1-5*x)))/(2*x).
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Extensions

Edited by Emeric Deutsch, Feb 18 2004
Showing 1-2 of 2 results.