A002217 Starting with n, repeatedly calculate the sum of prime factors (with repetition) of the previous term, until reaching 0 or a fixed point: a(n) is the number of terms in the resulting sequence.
2, 1, 1, 1, 1, 2, 1, 3, 3, 2, 1, 2, 1, 4, 4, 4, 1, 4, 1, 4, 3, 2, 1, 4, 3, 5, 4, 2, 1, 3, 1, 3, 5, 2, 3, 3, 1, 4, 5, 2, 1, 3, 1, 5, 2, 4, 1, 2, 5, 3, 5, 2, 1, 2, 5, 2, 3, 2, 1, 3, 1, 6, 2, 3, 5, 5, 1, 4, 6, 5, 1, 3, 1, 6, 2, 2, 5, 5, 1, 2, 3, 2, 1, 5, 3, 3, 4, 2, 1, 2, 5, 5, 3, 6, 5, 2, 1, 5, 2, 5, 1, 3, 1, 2, 5
Offset: 1
Keywords
Examples
20 -> 2+2+5 = 9 -> 3+3 = 6 -> 2+3 = 5, so a(20) = length of sequence {20,9,6,5} = 4.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Christian N. K. Anderson, Table of n, a(n) for n = 1..10000 (first 1000 terms are from T. D. Noe)
- Christian N. K. Anderson, n, the fixed point, a(n), and the trajectories for n = 1..10000.
- M. Lal, Iterates of a number-theoretic function, Math. Comp., 23 (1969), 181-183.
- Eric Weisstein's World of Mathematics, Sum of Prime Factors
Programs
-
Mathematica
sopfr[n_] := Times @@@ FactorInteger[n] // Total; a[1] = 2; a[n_] := Length[ FixedPointList[sopfr, n]] - 1; Array[a, 105] (* Jean-François Alcover, Feb 09 2018 *)
Extensions
More terms and better description from Reinhard Zumkeller, Apr 08 2003
Incorrect comment removed by Harvey P. Dale, Aug 16 2011