cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A160528 Coefficients in the expansion of C^4/B^5, in Watson's notation of page 118.

Original entry on oeis.org

1, 5, 20, 65, 190, 506, 1265, 2986, 6745, 14645, 30767, 62745, 124706, 242110, 460337, 858673, 1574140, 2839862, 5048435, 8852562, 15327290, 26224173, 44372688, 74301095, 123200079, 202394897, 329596348, 532299955, 852914900, 1356426196, 2141819621
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 506*x^5 + 1265*x^6 + ...
G.f. = q^23 + 5*q^47 + 20*q^71 + 65*q^95 + 190*q^119 + 506*q^143 + 1265*q^167 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^4 /(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

Formula

See Maple code in A160525 for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))^4/(1 - x^n)^5. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(62*n/21)) * sqrt(31) / (4*sqrt(3) * 7^(5/2) * n). - Vaclav Kotesovec, Nov 10 2017

A160553 Numbers n not of the form 7k+4 such that A000041(49n+47) == 0 (mod 343).

Original entry on oeis.org

36, 37, 55, 70, 79, 84, 93, 99, 105, 111, 118, 128, 134, 138, 140, 149, 156, 161, 163, 168, 174, 180, 185, 199, 208, 230, 240, 245, 247, 254, 255, 257, 260, 278, 282, 283, 289, 299, 300, 301, 331, 363, 365, 376, 377, 384, 385, 387, 397, 400
Offset: 1

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Programs

  • PARI
    for(n=1,10^3, if(n%7==4,next); if( numbpart(49*n+47)%343==0, print1(n,", ")) ) \\ Max Alekseyev, Feb 13 2012

Extensions

Watson found the terms 36, 37, 55 via A002300.
Extended to a(24)=199 using Watson's method (but with Maple's help) by N. J. A. Sloane, Nov 14 2009
Terms a(25) onward from Max Alekseyev, Feb 13 2012
Showing 1-2 of 2 results.