cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002318 Expansion of (1/theta_4(q)^2 -1)/4 in powers of q.

Original entry on oeis.org

1, 3, 8, 19, 42, 88, 176, 339, 633, 1150, 2040, 3544, 6042, 10128, 16720, 27219, 43746, 69483, 109160, 169758, 261504, 399272, 604560, 908248, 1354427, 2005710, 2950544, 4313232, 6267642, 9055856, 13013440, 18603603, 26463168, 37464230
Offset: 1

Views

Author

Keywords

Examples

			q + 3*q^2 + 8*q^3 + 19*q^4 + 42*q^5 + 88*q^6 + 176*q^7 + 339*q^8 + 633*q^9 + ...
		

References

  • J. W. L. Glaisher, "On the Coefficients in the q-series for pi/2K and 2G/pi", Quart J. Pure and Applied Math., 21 (1885), 60-76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001934.

Programs

  • Maple
    seq(coeff(convert(series(mul(( 1 - x^k )^(-(2+(k mod 2)*2)),k=1..100),x,100),polynom),x,i)/4,i=1..50); (Pab Ter)
  • Mathematica
    Rest[CoefficientList[ Series[(1/EllipticTheta[4, 0, q]^2 - 1)/4, {q, 0, 34}], q]] (* Jean-François Alcover, Jul 18 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Integrate[ (EllipticK[m] - EllipticE[m]) / (8 Sqrt[1 - m] (Pi/2) q), q], {q, 0, n}]] (* Michael Somos, Jan 24 2012 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A)^4 - 1, n) / 4)} /* Michael Somos, Feb 09 2006 */

Formula

Expansion of (eta(q^2)^2 / eta(q)^4 - 1) / 4 in powers of q.
a(n) = A001934(n) / 4.

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 18 2005