A002318 Expansion of (1/theta_4(q)^2 -1)/4 in powers of q.
1, 3, 8, 19, 42, 88, 176, 339, 633, 1150, 2040, 3544, 6042, 10128, 16720, 27219, 43746, 69483, 109160, 169758, 261504, 399272, 604560, 908248, 1354427, 2005710, 2950544, 4313232, 6267642, 9055856, 13013440, 18603603, 26463168, 37464230
Offset: 1
Keywords
Examples
q + 3*q^2 + 8*q^3 + 19*q^4 + 42*q^5 + 88*q^6 + 176*q^7 + 339*q^8 + 633*q^9 + ...
References
- J. W. L. Glaisher, "On the Coefficients in the q-series for pi/2K and 2G/pi", Quart J. Pure and Applied Math., 21 (1885), 60-76.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001934.
Programs
-
Maple
seq(coeff(convert(series(mul(( 1 - x^k )^(-(2+(k mod 2)*2)),k=1..100),x,100),polynom),x,i)/4,i=1..50); (Pab Ter)
-
Mathematica
Rest[CoefficientList[ Series[(1/EllipticTheta[4, 0, q]^2 - 1)/4, {q, 0, 34}], q]] (* Jean-François Alcover, Jul 18 2011 *) a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Integrate[ (EllipticK[m] - EllipticE[m]) / (8 Sqrt[1 - m] (Pi/2) q), q], {q, 0, n}]] (* Michael Somos, Jan 24 2012 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A)^4 - 1, n) / 4)} /* Michael Somos, Feb 09 2006 */
Formula
Expansion of (eta(q^2)^2 / eta(q)^4 - 1) / 4 in powers of q.
a(n) = A001934(n) / 4.
Extensions
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 18 2005