cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001934 Expansion of 1/theta_4(q)^2 in powers of q.

Original entry on oeis.org

1, 4, 12, 32, 76, 168, 352, 704, 1356, 2532, 4600, 8160, 14176, 24168, 40512, 66880, 108876, 174984, 277932, 436640, 679032, 1046016, 1597088, 2418240, 3632992, 5417708, 8022840, 11802176, 17252928, 25070568, 36223424, 52053760, 74414412
Offset: 0

Views

Author

Keywords

Comments

Euler transform of period 2 sequence [ 4, 2, ...].
The Cayley reference actually is to A004403. - Michael Somos, Feb 24 2011
Number of overpartition pairs, see Lovejoy reference. - _Joerg Arndt, Apr 03 2011
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^m and m>=1, then a(n) ~ exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)). - Vaclav Kotesovec, Aug 17 2015

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A001934List(len) = JacobiTheta4(len, -2)
    A001934List(33) |> println # Peter Luschny, Mar 12 2018
  • Maple
    mul((1+x^n)^2/(1-x^n)^2,n=1..256);
  • Mathematica
    CoefficientList[Series[1/EllipticTheta[4, 0, q]^2, {q, 0, 32}], q]  (* Jean-François Alcover, Jul 18 2011 *)
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    QP = QPochhammer; s = QP[q^2]^2/QP[q]^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    my(N=33, x='x+O('x^N)); Vec(prod(i=1, N, (1+x^i)^2/(1-x^i)^2))
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A)^4, n))} /* Michael Somos, Feb 09 2006 */
    

Formula

G.f.: Product ( 1 - x^k )^{-c(k)}, c(k) = 4, 2, 4, 2, 4, 2, ....
G.f.: Product{i>=1} (1+x^i)^2/(1-x^i)^2. - Jon Perry, Apr 04 2004
Expansion of eta(q^2)^2/eta(q)^4 in powers of q, where eta(x)=prod(n>=1,1-q^n).
a(n) = (-1)^n * A004403(n). a(n) = 4 * A002318(n) unless n=0. - Michael Somos, Feb 24 2011
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(15/4) * n^(5/4)) * (1 - 15/(8*Pi*sqrt(2*n)) + 105/(256*Pi^2*n)). - Vaclav Kotesovec, Aug 17 2015, extended Jan 22 2017
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
G.f.: exp(2*Sum_{k>=1} (sigma(2*k) - sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018
The g.f. A(q^2) = 1/(F(q)*F(-q)), where F(q) = theta_3(q) = Sum_{n = -oo..oo} q^(n^2) is the g.f. of A000122. Cf. A002513. - Peter Bala, Sep 26 2023

Extensions

More terms from James Sellers, Sep 08 2000
Edited by N. J. A. Sloane, May 13 2008 to remove an incorrect g.f.

A216273 Triangle generated by Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k/n = log(1 + Sum_{n>=1} y*x^(n^2)), where coefficients are read by rows.

Original entry on oeis.org

1, 0, -1, 0, 0, 1, 4, 0, 0, -1, 0, -5, 0, 0, 1, 0, 0, 6, 0, 0, -1, 0, 0, 0, -7, 0, 0, 1, 0, -4, 0, 0, 8, 0, 0, -1, 9, 0, 9, 0, 0, -9, 0, 0, 1, 0, -10, 0, -15, 0, 0, 10, 0, 0, -1, 0, 0, 11, 0, 22, 0, 0, -11, 0, 0, 1, 0, 0, 4, -12, 0, -30, 0, 0, 12, 0, 0, -1, 0, -13, 0, -13, 13, 0, 39, 0, 0, -13, 0, 0, 1, 0, 0, 28, 0, 28, -14, 0, -49, 0, 0, 14, 0, 0, -1
Offset: 1

Views

Author

Paul D. Hanna, Mar 16 2013

Keywords

Examples

			G.f.: A(x,y) = y*x - y^2*x^2/2 + y^3*x^3/3 + (-y^4 + 4*y)*x^4/4 + (y^5 - 5*y^2)*x^5/5 + (-y^6 + 6*y^3)*x^6/6 + (y^7 - 7*y^4)*x^7/7 + (-y^8 + 8
*y^5 - 4*y^2)*x^8/8 + (y^9 - 9*y^6 + 9*y^3 + 9*y)*x^9/9 + (-y^10 + 10*y^7 - 15*y^4 - 10*y^2)*x^10/10 +...
where
exp(A(x,y)) = 1 + y*x + y*x^4 + y*x^9 + y*x^16 + y*x^25 +...
Triangle begins:
1;
0, -1;
0, 0, 1;
4, 0, 0, -1;
0, -5, 0, 0, 1;
0, 0, 6, 0, 0, -1;
0, 0, 0, -7, 0, 0, 1;
0, -4, 0, 0, 8, 0, 0, -1;
9, 0, 9, 0, 0, -9, 0, 0, 1;
0, -10, 0, -15, 0, 0, 10, 0, 0, -1;
0, 0, 11, 0, 22, 0, 0, -11, 0, 0, 1;
0, 0, 4, -12, 0, -30, 0, 0, 12, 0, 0, -1;
0, -13, 0, -13, 13, 0, 39, 0, 0, -13, 0, 0, 1;
0, 0, 28, 0, 28, -14, 0, -49, 0, 0, 14, 0, 0, -1;
0, 0, 0, -45, 0, -50, 15, 0, 60, 0, 0, -15, 0, 0, 1;
16, 0, 0, -4, 64, 0, 80, -16, 0, -72, 0, 0, 16, 0, 0, -1;
0, -17, 17, 0, 17, -85, 0, -119, 17, 0, 85, 0, 0, -17, 0, 0, 1;
0, -9, 18, -54, 0, -45, 108, 0, 168, -18, 0, -99, 0, 0, 18, 0, 0, -1;
0, 0, 19, -19, 114, 0, 95, -133, 0, -228, 19, 0, 114, 0, 0, -19, 0, 0, 1;
0, -20, 0, -30, 24, -200, 0, -175, 160, 0, 300, -20, 0, -130, 0, 0, 20, 0, 0, -1;
0, 0, 42, -21, 42, -42, 315, 0, 294, -189, 0, -385, 21, 0, 147, 0, 0, -21, 0, 0, 1;
0, 0, 22, -66, 88, -55, 88, -462, 0, -462, 220, 0, 484, -22, 0, -165, 0, 0, 22, 0, 0, -1;
0, 0, 0, -69, 92, -230, 69, -184, 644, 0, 690, -253, 0, -598, 23, 0, 184, 0, 0, -23, 0, 0, 1;
0, 0, 24, 0, 144, -124, 480, -84, 360, -864, 0, -990, 288, 0, 728, -24, 0, -204, 0, 0, 24, 0, 0, -1;
25, -25, 0, -75, 25, -250, 175, -875, 100, -655, 1125, 0, 1375, -325, 0, -875, 25, 0, 225, 0, 0, -25, 0, 0, 1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=n*polcoeff(polcoeff(log(1+sum(m=1,sqrtint(n)+1,y*x^(m^2))+x*O(x^n)),n,x),k,y)}
    for(n=1,25,for(k=1,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Alternate g.f., true for all m >= 0: */
    {T(n,k,m=0) = if(k<1||m<0,0, (n/k/binomial(k+m,m)) * polcoeff(polcoeff( 1 - 1/(1+sum(j=1,sqrtint(n+1),y*x^(j^2))+x*O(x^n))^(m+1), n,x),k,y))}
    for(n=1, 25, for(k=1, n, print1(T(n, k, 1), ", ")); print(""))

Formula

G.f.: Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k*k*binomial(k+m,m)/n = 1 - 1/(1 + Sum_{n>=1} y*x^(n^2))^(m+1), which holds for all m >= 0.
Row sums equal A162552.
Sum_{k=1..n} T(n,k)*2^k = -(-1)^n*(sigma(2*n) - sigma(n)) for n>=1, where sigma is the sum of divisors of n, A000203.
Sum_{k=1..n} T(n,k)*2^k*k = -(-1)^n*n*A015128(n) for n>=1, where A015128(n) is the number of overpartitions of n, with g.f.: Product_{n>=1} (1+x^n)/(1-x^n).
Sum_{k=1..n} T(n,k)*2^k*k*(k+1) = -(-1)^n*4*n*A002318(n) for n>=1, where A002318 lists the coefficients in (1/theta_4(q)^2 -1)/4 in powers of q.
Sum_{k=1..n} T(n,k)*2^k*k*(k+1)*(k+2)/2! = -n*A004404(n) for n>=1, where A004404 lists the coefficients in 1/(1 + Sum_{n>=1} 2*x^(n^2))^3.
Sum_{k=1..n} T(n,k)*2^k*k*(k+1)*(k+2)*(k+3)/3! = -n*A004405(n) for n>=1, where A004405 lists the coefficients in 1/(1 + Sum_{n>=1} 2*x^(n^2))^4.
More generally:
Sum_{k=1..n} T(n,k)*y^k*k*binomial(k+m,m)/n = [x^n] 1 - 1/(1 + Sum_{n>=1} y*x^(n^2))^(m+1) for m>=0, n>=1.

A172259 Let CK(m) denote the complete elliptic integral of the first kind. a(n) is the n-th smallest integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.

Original entry on oeis.org

1, 2, 5, 14, 38, 101, 275, 746, 2026, 5507, 14969, 40689, 110604, 300652, 817255, 2221528, 6038739, 16414993, 44620576, 121291299, 329703934, 896228212, 2436200862, 6622280533, 18001224835, 48932402358, 133012060152, 361564266077, 982833574297, 2671618645410
Offset: 1

Views

Author

Michel Lagneau, Jan 30 2010

Keywords

Comments

F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt and the complete elliptic integral CK is defined by CK(k) = F(1,sqrt(1-k^2)). We calculate the values of CK(k) with k = 1/p, p = 1,2,3, ... and we propose a very interesting property: a(n+1)/a(n) tends toward e = 2.7182818... when n tends to infinity. For example, a(8) / a(7) = 2.718281581; a(9) / a(8) = 2.7182817562.

Examples

			a(3) = 38 because floor(CK(1/37)) = 4 and floor(CK(1/38)) = 5.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 575, Eq. 16.22.1 and 16.22.2.
  • M. Abramowitz and I. Stegun, "Elliptic Integrals", Chapter 17 of Handbook of Mathematical Functions. Dover Publications Inc., New York, 1046 p., (1965).
  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

Programs

  • Maple
    a0:=1:for p from 1 to 1000 do:a:= evalf(EllipticCK(1/p)):if floor(a)=a0+1 then print(p):a0:=floor(a):else fi:od:

Formula

F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt. CK is defined by CK(k) = F(1,sqrt(1-k^2)). a(n) is the n-th integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.
Showing 1-3 of 3 results.