cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002331 Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 4, 2, 5, 3, 5, 4, 1, 3, 7, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 4, 6, 15, 22, 11, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002330, A002313, A002144, A027862 (locates y=x+1).

Programs

  • Maple
    See A002330 for Maple program.
    # alternative
    A002331 := proc(n)
        A363051(A002313(n)) ;
    end proc:
    seq(A002331(n),n=1..100) ; # R. J. Mathar, Feb 01 2024
  • Mathematica
    pmax = 1000; x[p_] := Module[{x, y}, x /. ToRules[Reduce[0 <= x <= y && x^2 + y^2 == p, {x, y}, Integers]]]; For[n=1; p=2, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p,t=s;s=x%s;x=t);s
    forprime(p=2,1e3,if(p%4-3,print1(sqrtint(p-f(p)^2)", ")))
    \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    do(p)=qfbsolve(Qfb(1,0,1),p)[2]
    forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013

Formula

a(n) = A096029(n) - A096030(n) for n > 1. - Lekraj Beedassy, Jul 16 2004
a(n+1) = Min(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A363051(A002313(n)). - R. J. Mathar, Jan 31 2024