A002374 Largest prime <= n in any decomposition of 2n into a sum of two odd primes.
3, 3, 5, 5, 7, 5, 7, 7, 11, 11, 13, 11, 13, 13, 17, 17, 19, 17, 19, 13, 23, 19, 19, 23, 23, 19, 29, 29, 31, 23, 29, 31, 29, 31, 37, 29, 37, 37, 41, 41, 43, 41, 43, 31, 47, 43, 37, 47, 43, 43, 53, 47, 43, 53, 53, 43, 59, 59, 61, 53, 59, 61, 59, 61, 67, 53, 67, 67, 71, 71, 73, 59
Offset: 3
References
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 80.
- N. Pipping, Neue Tafeln für das Goldbachsche Gesetz nebst Berichtigungen zu den Haussnerschen Tafeln, Finska Vetenskaps-Societeten, Comment. Physico Math. 4 (No. 4, 1927), pp. 1-27.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 3..10000
Crossrefs
Programs
-
Mathematica
nmax = 74; a[n_] := (k = 0; While[k < n && (!PrimeQ[n-k] || !PrimeQ[n+k]), k++]; If[k == n, n+1, n-k]); Table[a[n], {n, 3, nmax}](* Jean-François Alcover, Nov 14 2011, after Jason Kimberley *) lp2n[n_]:=Max[Select[Flatten[Select[IntegerPartitions[2n,{2}],AllTrue[ #, PrimeQ]&]],#<=n&]]; Array[lp2n,80,2] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 08 2018 *)
-
PARI
a(n)=forstep(k=n,1,-1, if(isprime(k) && isprime(2*n-k), return(k))) \\ Charles R Greathouse IV, Feb 07 2017
-
PARI
A002374(n)=forprime(q=n, 2*n, isprime(2*n-q)&&return(2*n-q)) \\ M. F. Hasler, May 03 2019
Formula
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Sep 21 2000
Comments