A002397 a(n) = n! * lcm({1, 2, ..., n+1}).
1, 2, 12, 72, 1440, 7200, 302400, 4233600, 101606400, 914457600, 100590336000, 1106493696000, 172613016576000, 2243969215488000, 31415569016832000, 942467070504960000, 256351043177349120000, 4357967734014935040000, 1490424965033107783680000
Offset: 0
Keywords
Examples
5! is 120, and the least common multiple of 2, 3, 4, 5 and 6 is 60, so a(5) = 7200.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jack W Grahl, Table of n, a(n) for n = 0..100
- Jack W Grahl, Explanation of the use of this sequence.
- Jack W Grahl, Python code to calculate this and related sequences.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233.
- W. F. Pickard, Tables for the step-by-step integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229-233. [Annotated scanned copy]
Crossrefs
Programs
-
PARI
a(n) = n!*lcm([1..n+1]); \\ Michel Marcus, Oct 15 2023
Formula
a(n) = n! * lcm{1,2,...,n+1} = n!*A003418(n+1). - Sean A. Irvine, Nov 07 2013
Extensions
More terms from Sean A. Irvine, Nov 07 2013
More terms from Jack W Grahl, Feb 27 2021
Comments