A002424 Expansion of (1-4*x)^(9/2).
1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
- N. J. A. Sloane, Notes on A984 and A2420-A2424.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019 -
Maple
A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)): seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
-
Mathematica
CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
-
PARI
my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
-
PARI
vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
-
Sage
[(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
Formula
a(n) = Sum_{m=0..n} binomial(n, m) * K_m(10), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg, abarg(AT)research.bell-labs.com.
a(n) = -(945/32)*4^n*Gamma(-9/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n*binomial(9/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+11)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 32/35 - 22*Pi/(3^7*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 1050752/984375 - 44*log(phi)/(5^6*sqrt(5)), where phi is the golden ratio (A001622). (End)