cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002430 Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).

Original entry on oeis.org

1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, 1736640792209901647222, 418781231495293038913922
Offset: 1

Views

Author

Keywords

Comments

a(n) appears to be a multiple of A046990(n) (checked up to n=250). - Ralf Stephan, Mar 30 2004
The Taylor series for tan(x) appears to be identical to the sequence of quotients A160469(n)/A156769(n). - Johannes W. Meijer, May 24 2009

Examples

			tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... =
  x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + ... =
  Sum_{n >= 1} (2^(2n) - 1) * (2x)^(2n-1) * |bernoulli_2n| / (n*(2n-1)!).
tanh(x) = x - (1/3)*x^3 + (2/15)*x^5 - (17/315)*x^7 + (62/2835)*x^9 - (1382/155925)*x^11 + ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74.
  • H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 329.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A036279 (denominators), A000182, A099612, A160469, A156769.

Programs

  • Magma
    [Numerator( (-1)^(n-1)*4^n*(4^n-1)*Bernoulli(2*n)/Factorial(2*n) ): n in [1..20]]; // G. C. Greubel, Jul 03 2019
    
  • Maple
    R := n -> (-1)^floor(n/2)*(4^n-2^n)*Zeta(1-n)/(n-1)!:
    seq(numer(R(2*n)), n=1..20); # Peter Luschny, Aug 25 2015
  • Mathematica
    a[n_]:= (-1)^Floor[n/2]*(4^n - 2^n)*Zeta[1-n]/(n-1)!; Table[Numerator@ a[2n], {n, 20}] (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    a(n) = numerator( (-1)^(n-1)*4^n*(4^n-1)*bernfrac(2*n)/(2*n)! ); \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [numerator( (-1)^(n-1)*4^n*(4^n-1)*bernoulli(2*n)/factorial(2*n)  ) for n in (1..20)] # G. C. Greubel, Jul 03 2019

Formula

a(n) is the numerator of (-1)^(n-1)*2^(2*n)*(2^(2*n) -1)* Bernoulli(2*n)/(2*n)!. - Johannes W. Meijer, May 24 2009
Let R(x) = (cos(x*Pi/2) + sin(x*Pi/2))*(4^x - 2^x)*Zeta(1-x)/(x-1)!. Then a(n) = numerator(R(2*n)) and A036279(n) = denominator(R(2*n)). - Peter Luschny, Aug 25 2015

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003