A002430 Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x).
1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, 1736640792209901647222, 418781231495293038913922
Offset: 1
Examples
tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... = x + (1/3)*x^3 + (2/15)*x^5 + (17/315)*x^7 + (62/2835)*x^9 + ... = Sum_{n >= 1} (2^(2n) - 1) * (2x)^(2n-1) * |bernoulli_2n| / (n*(2n-1)!). tanh(x) = x - (1/3)*x^3 + (2/15)*x^5 - (17/315)*x^7 + (62/2835)*x^9 - (1382/155925)*x^11 + ...
References
- G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74.
- H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 329.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..276 (first 100 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.67).
- R. W. van der Waall, On a property of tan x, J. Number Theory 5 (1973) 242-244.
- Eric Weisstein's World of Mathematics, Hyperbolic Tangent.
- Eric Weisstein's World of Mathematics, Tangent.
- Herbert S. Wilf, Generatingfunctionology, Academic Press, NY, 1990. See p. 50.
Programs
-
Magma
[Numerator( (-1)^(n-1)*4^n*(4^n-1)*Bernoulli(2*n)/Factorial(2*n) ): n in [1..20]]; // G. C. Greubel, Jul 03 2019
-
Maple
R := n -> (-1)^floor(n/2)*(4^n-2^n)*Zeta(1-n)/(n-1)!: seq(numer(R(2*n)), n=1..20); # Peter Luschny, Aug 25 2015
-
Mathematica
a[n_]:= (-1)^Floor[n/2]*(4^n - 2^n)*Zeta[1-n]/(n-1)!; Table[Numerator@ a[2n], {n, 20}] (* Michael De Vlieger, Aug 25 2015 *)
-
PARI
a(n) = numerator( (-1)^(n-1)*4^n*(4^n-1)*bernfrac(2*n)/(2*n)! ); \\ G. C. Greubel, Jul 03 2019
-
Sage
[numerator( (-1)^(n-1)*4^n*(4^n-1)*bernoulli(2*n)/factorial(2*n) ) for n in (1..20)] # G. C. Greubel, Jul 03 2019
Formula
a(n) is the numerator of (-1)^(n-1)*2^(2*n)*(2^(2*n) -1)* Bernoulli(2*n)/(2*n)!. - Johannes W. Meijer, May 24 2009
Let R(x) = (cos(x*Pi/2) + sin(x*Pi/2))*(4^x - 2^x)*Zeta(1-x)/(x-1)!. Then a(n) = numerator(R(2*n)) and A036279(n) = denominator(R(2*n)). - Peter Luschny, Aug 25 2015
Extensions
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003
Comments