A002437 a(n) = A000364(n) * (3^(2*n+1) + 1)/4.
1, 7, 305, 33367, 6815585, 2237423527, 1077270776465, 715153093789687, 626055764653322945, 698774745485355051847, 968553361387420436695025, 1632180870878422847476890007, 3286322019402928956112227932705, 7791592461957309952817483706344167, 21485762937086358457367440231243675985
Offset: 0
Examples
a(4) = A000364(4) * (3^(2*4+1)+1)/4 = 1385 * (3^9+1)/4 = 1385 * 4921 = 6815585.
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
- J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
- L. B. W. Jolley, Summation of Series, Dover, 2nd ed. (1961)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, vol. 6, no. 1, #R21, (1999).
Crossrefs
Programs
-
Maple
Q:=proc(n) option remember; if n=0 then RETURN(1); else RETURN(expand((u^2+1)*diff(Q(n-1),u)+u*Q(n-1))); fi; end; [seq(subs(u=sqrt(3),Q(2*n)),n=0..25)];
-
Mathematica
Table[Abs[EulerE[2 n]] (3^(2 n + 1) + 1) / 4, {n, 0, 30}] (* Vincenzo Librandi, Feb 07 2017 *)
Formula
A000364(n) * (3^(2*n+1) + 1)/4.
Q_2n(sqrt(3)), where the polynomials Q_n() are defined in A104035. - N. J. A. Sloane, Nov 06 2009
a(n) = (-1)^n*Sum_{k = 0..2*n-1} w^(2*n+k)*Sum_{j = 1..2*n-1} (-1)^(k-j)*binomial(2*n-1,k-j)*(2*j - 1)^(2*n-2), where w = exp(2*Pi*i/6) (i = sqrt(-1)). Cf. A002439. - Peter Bala, Jan 21 2011
Sum_{n>=1} (-1)^floor((n-1)/2) 1/A007310(n)^s = r_s with r_{2s+1} = 2 *(Pi/6)^(2s+1) *a(s) /(2s)!. [Jolley eq (315)]. - R. J. Mathar, Mar 24 2011
From Peter Bala, Feb 06 2017: (Start)
E.g.f.: cos(x)^2/cos(3*x) = cos(x)/(1 - 4*sin(x)^2) = 1 + 7*x^2/2! + 305*x^4/4! + 33367*x^6/6! + .... This is the even part of (1/2)*sec(x + Pi/3). Cf. A000191. (End)
a(n) = (1/2)*Integral_{x = 0..inf} x^(2*n)*cosh(Pi*x/3)/cosh(Pi*x/2) dx. - Cf. A000281. - Peter Bala, Nov 08 2019
Extensions
More terms from Herman P. Robinson
Further terms from N. J. A. Sloane, Nov 06 2009
Comments