A002468 The game of Mousetrap with n cards: the number of permutations of n cards having at least one hit after 2.
0, 0, 1, 3, 13, 65, 397, 2819, 22831, 207605, 2094121, 23205383, 280224451, 3662810249, 51523391965, 776082247979, 12463259986087, 212573743211549, 3837628837381201, 73108996989052175, 1465703611456618891, 30847249002794047793, 679998362512214208901, 15668677914172813691699, 376683592679293811722735
Offset: 1
References
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Joerg Arndt, Table of n, a(n) for n = 1..102
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy]
- J. Metzger, Email to N. J. A. Sloane, Apr 30 1991
- Daniel J. Mundfrom, A problem in permutations: the game of 'Mousetrap'. European J. Combin. 15 (1994), no. 6, 555-560.
- A. Steen, Some formulas respecting the game of mousetrap, Quart. J. Pure Applied Math., 15 (1878), 230-241.
- Eric Weisstein's World of Mathematics, Mousetrap
Programs
-
Mathematica
a[n_] := (n-2)*(n-2)!-(n-4)*Subfactorial[n-3]-(n-3)*Subfactorial[n-2]; a[1]=a[2]=0; a[3]=1; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Dec 12 2014 *)
Formula
Extensions
Added two more terms, Joerg Arndt, Feb 15 2014
Comments