A002491 Smallest number of stones in Tchoukaillon (or Mancala, or Kalahari) solitaire that make use of n-th hole.
1, 2, 4, 6, 10, 12, 18, 22, 30, 34, 42, 48, 58, 60, 78, 82, 102, 108, 118, 132, 150, 154, 174, 192, 210, 214, 240, 258, 274, 282, 322, 330, 360, 372, 402, 418, 442, 454, 498, 510, 540, 570, 612, 622, 648, 672, 718, 732, 780, 802, 840, 870, 918
Offset: 1
Examples
To get 10th term: 10->18->24->28->30->30->32->33->34->34.
References
- Y. David, On a sequence generated by a sieving process, Riveon Lematematika, 11 (1957), 26-31.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.4.7.
- V. Gautheron, Chapter 3.II.5: La Tchouka, in Wari et Solo: le Jeu de calculs africain (Les Distracts), Edited by A. Deledicq and A. Popova, CEDIC, Paris, 1977, 180-187.
- D. E. Knuth, Bipartite Matching, The Art of Computer Programming, Vol. 4, Pre-fascicle 14A, June 8, 2021, http://cs.stanford.edu/~knuth/fasc14a.ps.gz. See Sect. 7.5.1, Exercise 11.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Kerry Mitchell, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- D. Betten, Kalahari and the Sequence "Sloane No. 377", Annals Discrete Math., 37, 51-58, 1988.
- D. M. Broline and Daniel E. Loeb, The combinatorics of Mancala-Type games: Ayo, Tchoukaillon and 1/Pi, J. Undergrad. Math. Applic., vol. 16 (1995), pp. 21-36; arXiv:math/9502225 [math.CO], 1995.
- K. S. Brown, Rounding Up To PI
- Y. David, On a sequence generated by a sieving process, Riveon Lematematika, 11 (1957), 26-31. [Annotated scan of pages 31 and 27 only]
- Mark Dukes, Sequences of integer pairs related to the game of Tchoukaillon solitaire, University College Dublin (Ireland, 2020).
- Mark Dukes, Fagan's Construction, Strange Roots, and Tchoukaillon Solitaire, Journal of Integer Sequences, Vol. 24 (2021), Article 21.7.1.
- Mark Dukes, Fagan's Construction, Strange Roots, and Tchoukaillon Solitaire, arXiv:2202.02381 [math.NT], 2022.
- P. Erdős and E. Jabotinsky, On a sequence of integers generated by a sieving process (Part I), Indagationes Math., 20, 115-128, 1958.
- P. Erdős and E. Jabotinsky, On a sequence of integers generated by a sieving process (Part II), Indagationes Math., 20, 115-128, 1958.
- B. Gourevitch, The World of Pi
- Nick Hobson, Python program for this sequence
- Brant Jones, Laura Taalman and Anthony Tongen, Solitaire Mancala Games and the Chinese Remainder Theorem, Amer. Math. Mnthly, 120 (2013), 706-724.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Eric Weisstein's World of Mathematics, Pi.
- Eric Weisstein's World of Mathematics, Pi Formulas.
- Index entries for sequences generated by sieves
Crossrefs
Programs
-
Haskell
a002491 n = a002491_list !! (n-1) a002491_list = sieve 1 [1..] where sieve k (x:xs) = x : sieve (k+1) (mancala xs) where mancala xs = us ++ mancala vs where (us,v:vs) = splitAt k xs -- Reinhard Zumkeller, Oct 31 2012
-
Maple
# A002491 # program due to B. Gourevitch a := proc(n) local x,f,i,y; x := n; f := n; for i from x by -1 to 2 do y := i-1; while y < f do y := y+i-1 od; f := y od end: seq(a(n), n = 2 .. 53);
-
Mathematica
f[n_] := Fold[ #2*Ceiling[ #1/#2 + 0] &, n, Reverse@Range[n - 1]]; Array[f, 56] (* Robert G. Wilson v, Nov 05 2005 *) del[list_, k_] := Delete[list, Table[{i}, {i, k, Length[list], k}]]; a[n_] := Last@NestWhile[{#[[1]] + 1, del[Rest@#[[2]], #[[1]] + 1], Append[#[[3]], First@#[[2]]]} &, {1,Range[n], {}}, #[[2]] =!= {} &]; a[1000] (* Birkas Gyorgy, Feb 26 2011 *) Table[1 + First@FixedPoint[{Floor[#[[1]]*(#[[2]] + 1/2)/#[[2]]], #[[2]] + 1} &, {n, 1}, SameTest -> (#1[[1]] == #2[[1]] &)], {n, 0, 30}] (* Birkas Gyorgy, Mar 07 2011 *) f[n_]:=Block[{x,p},For[x=p=1, p<=n, p++, x=Ceiling[(n+2-p)x/(n+1-p)]];x] (* Don Knuth, May 27 2021 *)
-
PARI
a(n)=forstep(k=n-1,2,-1, n=((n-1)\k+1)*k); n \\ Charles R Greathouse IV, Mar 29 2016
Formula
A130747(a(n)) = 1. - Reinhard Zumkeller, Jun 23 2009
a(n+1) = 1 + [..[[[[n*3/2]5/4]7/6]9/8]...(2k+1)/2k]...]. - Birkas Gyorgy, Mar 07 2011
Limit_{n -> oo} n^2/a(n) = Pi (see Brown). - Peter Bala, Mar 12 2014
Comments