A002505 Nearest integer to the n-th Gram point.
18, 23, 28, 32, 35, 39, 42, 46, 49, 52, 55, 58, 60, 63, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126
Offset: 0
Keywords
References
- C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
- A. Ivić, The Theory of Hardy's Z-Function, Cambridge University Press, 2013, pages 109-112.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..3000
- Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.
- Mats Granvik Gram points computed by iterative formula.
- C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, annotated scanned copy of page 58.
- Eric Weisstein's World of Mathematics, Gram Point.
Programs
-
Mathematica
a[n_] := Round[ g /. FindRoot[ RiemannSiegelTheta[g] == Pi*n, {g, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
-
Sage
a = lambda n: round(2*pi*(n - 7/8)/lambert_w((n - 7/8)/exp(1))) print([a(n) for n in (1..41)]) # Peter Luschny, May 19 2016
Formula
a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Oct 23 2015
From Mats Granvik, May 16 2016: (Start)
a(n) = round(2*Pi*exp(1 + LambertW((8*n + 1)/(8*exp(1))))), Eric Weisstein's World of Mathematics.
a(n+1) = round(2*Pi*(n - 7/8)/LambertW((n - 7/8)/exp(1))), after Guilherme França, André LeClair formula (163) page 47.
(End)
For c = 0 the n-th Gram point x is the fixed point solution to the iterative formula:
x = 2*Pi*e^(LambertW (-((c - n + RiemannSiegelTheta (x)/Pi + (x*(-log (x) + 1 + log (2) + log (Pi)))/(2*Pi) + 2)/e)) + 1). - Mats Granvik, Jun 17 2017
Comments