cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002528 a(n) = A188491(n+1) - A188494(n) - A002526(n).

Original entry on oeis.org

0, 0, 2, 4, 12, 32, 108, 336, 1036, 3120, 9540, 29244, 89768, 274788, 840936, 2573972, 7881922, 24135000, 73897320, 226249264, 692714696, 2120941424, 6493883944, 19882820480, 60876609464, 186390208744, 570684661408, 1747307671896, 5349860697088
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) is the number of permutations p on the set [n] with the properties that abs(p(i)-i) <= 3 for all i, p(1) <= 2, and p(2) <= 4.
For n >= 2, a(n) is also the permanent of the n X n matrix that has ones on its diagonal, ones on its three superdiagonals, ones on its three subdiagonals (with the exception of zeros in the (3,1), (4,1), and (5,2)-entries), and is zero elsewhere.
This is row 9 of Kløve's Table 3.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    with(LinearAlgebra):
    A002528:= n-> `if` (n<=1, 0, Permanent (Matrix (n, (i, j)->
                  `if` (abs(j-i)<4 and [i, j]<>[3, 1] and [i, j]<>[4, 1] and [i, j]<>[5, 2], 1, 0)))):
  • Mathematica
    a[n_] := Permanent[Table[If[Abs[j - i] < 4 && {i, j} != {3, 1} && {i, j} != {4, 1} && {i, j} != {5, 2}, 1, 0], {i, 1, n}, {j, 1, n}]]; a[1] = 0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
    CoefficientList[Series[2 x^2 / ((1 - x) (x^13 + 3 x^12 + 3 x^11 + 5 x^10 + 9 x^9 + 7 x^8 - 3 x^7 - 19 x^6 - 21 x^5 - 13 x^4 - 3 x^3 - 3 x^2 - x + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 07 2016 *)
    LinearRecurrence[{2,2,0,10,8,-2,-16,-10,-2,4,2,0,2,1},{0,0,2,4,12,32,108,336,1036,3120,9540,29244,89768,274788},20] (* Harvey P. Dale, Jan 04 2020 *)
  • PARI
    concat([0,0], Vec(-2*x^2 / ((x -1)*(x^13 +3*x^12 +3*x^11 +5*x^10 +9*x^9 +7*x^8 -3*x^7 -19*x^6 -21*x^5 -13*x^4 -3*x^3 -3*x^2 -x +1)) + O(x^100))) \\ Colin Barker, Dec 16 2014

Formula

a(n) = A002527(n-1) + A188491(n-1). - Nathaniel Johnston, Apr 10 2011
G.f.: -2*x^2 / ((x -1)*(x^13 +3*x^12 +3*x^11 +5*x^10 +9*x^9 +7*x^8 -3*x^7 -19*x^6 -21*x^5 -13*x^4 -3*x^3 -3*x^2 -x +1)). - Colin Barker, Dec 16 2014

Extensions

Name and comments edited, and a(12)-a(28) from Nathaniel Johnston, Apr 10 2011