A002528 a(n) = A188491(n+1) - A188494(n) - A002526(n).
0, 0, 2, 4, 12, 32, 108, 336, 1036, 3120, 9540, 29244, 89768, 274788, 840936, 2573972, 7881922, 24135000, 73897320, 226249264, 692714696, 2120941424, 6493883944, 19882820480, 60876609464, 186390208744, 570684661408, 1747307671896, 5349860697088
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..90
- Torleiv Kløve, Spheres of Permutations under the Infinity Norm - Permutations with limited displacement. Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
- R. Lagrange, Quelques résultats dans la métrique des permutations, Annales Scientifiques de l'École Normale Supérieure, Paris, 79 (1962), 199-241.
- Index entries for linear recurrences with constant coefficients, signature (2,2,0,10,8,-2,-16,-10,-2,4,2,0,2,1).
Programs
-
Maple
with(LinearAlgebra): A002528:= n-> `if` (n<=1, 0, Permanent (Matrix (n, (i, j)-> `if` (abs(j-i)<4 and [i, j]<>[3, 1] and [i, j]<>[4, 1] and [i, j]<>[5, 2], 1, 0)))):
-
Mathematica
a[n_] := Permanent[Table[If[Abs[j - i] < 4 && {i, j} != {3, 1} && {i, j} != {4, 1} && {i, j} != {5, 2}, 1, 0], {i, 1, n}, {j, 1, n}]]; a[1] = 0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *) CoefficientList[Series[2 x^2 / ((1 - x) (x^13 + 3 x^12 + 3 x^11 + 5 x^10 + 9 x^9 + 7 x^8 - 3 x^7 - 19 x^6 - 21 x^5 - 13 x^4 - 3 x^3 - 3 x^2 - x + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 07 2016 *) LinearRecurrence[{2,2,0,10,8,-2,-16,-10,-2,4,2,0,2,1},{0,0,2,4,12,32,108,336,1036,3120,9540,29244,89768,274788},20] (* Harvey P. Dale, Jan 04 2020 *)
-
PARI
concat([0,0], Vec(-2*x^2 / ((x -1)*(x^13 +3*x^12 +3*x^11 +5*x^10 +9*x^9 +7*x^8 -3*x^7 -19*x^6 -21*x^5 -13*x^4 -3*x^3 -3*x^2 -x +1)) + O(x^100))) \\ Colin Barker, Dec 16 2014
Formula
G.f.: -2*x^2 / ((x -1)*(x^13 +3*x^12 +3*x^11 +5*x^10 +9*x^9 +7*x^8 -3*x^7 -19*x^6 -21*x^5 -13*x^4 -3*x^3 -3*x^2 -x +1)). - Colin Barker, Dec 16 2014
Extensions
Name and comments edited, and a(12)-a(28) from Nathaniel Johnston, Apr 10 2011
Comments