cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002540 Increasing gaps between prime-powers.

Original entry on oeis.org

1, 5, 13, 19, 32, 53, 89, 139, 199, 293, 887, 1129, 1331, 5591, 8467, 9551, 15683, 19609, 31397, 155921, 360653, 370261, 492113, 1349533, 1357201, 2010733, 4652353, 17051707, 20831323, 47326693, 122164747, 189695659, 191912783, 387096133, 436273009, 1294268491
Offset: 1

Views

Author

Keywords

Comments

List of prime-powers where A057820 increases.
The entry K=a(k) is the start of the smallest chain of m=A121492(k) consecutive numbers such that lcm(1,2,...,K) = lcm(1,2,...,K,K+1) = lcm(1,2,...,K,K+1,K+2) = ... = lcm(1,2,...,K,...,K+m-1). See A121493. - Lekraj Beedassy, Aug 03 2006

References

  • J. P. Gram, Undersoegelser angaaende maengden af primtal under en given graense, Det Kongelige Danskevidenskabernes Selskabs Skrifter, series 6, vol. 2 (1884), 183-288; see p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000961 (prime-powers), A057820 (gaps), A002386 (prime equivalent), A094158, A121493.

Programs

  • Mathematica
    s = {}; gap = 0; p1 = 1; Do[If[PrimePowerQ[p2], If[(d = p2 - p1) > gap, gap = d; AppendTo[s, p1]]; p1 = p2], {p2, 2, 10^6}]; s (* Amiram Eldar, Dec 12 2022 *)
    Join[{1},Rest[Module[{nn=5*10^6,pps},pps=Select[Range[nn],PrimePowerQ]; DeleteDuplicates[ Thread[{Most[ pps],Differences[ pps]}],GreaterEqual[ #1[[2]],#2[[2]]]&]][[;;,1]]]] (* The program generates the first 27 terms of the sequence. *) (* Harvey P. Dale, Aug 20 2024 *)
  • PARI
    /* calculates smaller terms - see Donovan Johnson link for larger terms */
    isA000961(n) = (omega(n) == 1 || n == 1)
    d_max=0;n_prev=1;for(n=2,1e6,if(isA000961(n),d=n-n_prev;if(d>d_max,print(n_prev);d_max=d);n_prev=n)) \\ Michael B. Porter, Oct 31 2009

Extensions

Second term corrected by Donovan Johnson, Nov 13 2008 (cf. A094158)
a(28)-a(79) from Donovan Johnson, Nov 14 2008