A002564 Number of different ways one can attack all squares on an n X n chessboard using the minimum number of queens.
1, 4, 1, 12, 186, 4, 86, 4860, 114, 8, 2, 8, 288, 4632, 205832, 2968, 124, 16, 84
Offset: 1
References
- W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andy Huchala, Python program.
- Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
- Mia Müßig, Julia code to compute the sequence
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
- Eric Weisstein's World of Mathematics, Minimal Edge Cover.
- Eric Weisstein's World of Mathematics, Minimum Dominating Set.
- Eric Weisstein's World of Mathematics, Queen Graph.
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 1 to 7
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 8
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 9 to 13
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 14
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 16
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 17 to 19
Crossrefs
Extensions
New name of the sequence from Vaclav Kotesovec, Sep 07 2012
a(9)-a(10) from Vaclav Kotesovec, Sep 07 2012
a(11) from Svyatoslav Starkov, Sep 16 2013
a(12)-a(13) from Sean A. Irvine, Apr 07 2014
Definition edited by N. J. A. Sloane, Dec 25 2017 at the suggestion of Brendan McKay.
a(14) from Andy Huchala, Mar 13 2024
a(15)-a(19) from Mia Muessig, Oct 04 2024
Comments