cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002586 Smallest prime factor of 2^n + 1.

Original entry on oeis.org

3, 5, 3, 17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 65537, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 641, 3, 5, 3, 17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 257, 3, 5, 3, 17, 3, 5, 3, 274177, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 65537, 3, 5, 3, 17, 3, 5
Offset: 1

Views

Author

Keywords

Comments

Conjecture: a(8+48*k) = 257 and a(40+48*k) = 257, where k is a nonnegative integer. - Thomas König, Feb 15 2017
Conjecture is true: 257 divides 2^(8+48*k)+1 and 2^(40+48*k)+1 but no prime < 257 ever does. Similarly, a(24+48*k) = 97. - Robert Israel, Feb 17 2017
From Robert Israel, Feb 17 2017: (Start)
If a(n) = p, there is some m such that a(n+m*j*n) = p for all j.
In particular, every member of the sequence occurs infinitely often.
a(k*n) <= a(n) for any odd k. (End)

Examples

			a(2^k) = 3, 5, 17, 257, 65537 is the k-th Fermat prime 2^(2^k) + 1 = A019434(k) for k = 0, 1, 2, 3, 4. - _Jonathan Sondow_, Nov 28 2012
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres, Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_] := FactorInteger[2^n + 1][[1, 1]]; Array[f, 100] (* Robert G. Wilson v, Nov 28 2012 *)
    FactorInteger[#][[1,1]]&/@(2^Range[90]+1) (* Harvey P. Dale, Jul 25 2024 *)
  • PARI
    a(n) = my(m=n%8); if(m, [3, 5, 3, 17, 3, 5, 3][m], factor(2^n+1)[1,1]); \\ Ruud H.G. van Tol, Feb 16 2024
    
  • Python
    from sympy import primefactors
    smallest_primef = []
    for n in range(1,87):
        y = (2 ** n) + 1
        smallest_primef.append(min(primefactors(y)))
    print(smallest_primef) # Adrienne Leonardo, Dec 29 2024

Formula

a(n) = 3, 5, 3, 17, 3, 5, 3 for n == 1, 2, 3, 4, 5, 6, 7 (mod 8). (Proof. Let n = k*odd with k = 1, 2, or 4. As 2^k = 2, 4, 16 == -1 (mod 3, 5, 17), we get 2^n + 1 = 2^(k*odd) + 1 = (2^k)^odd + 1 == (-1)^odd + 1 == 0 (mod 3, 5, 17). Finally, 2^n + 1 !== 0 (mod p) for prime p < 3, 5, 17, respectively.) - Jonathan Sondow, Nov 28 2012

Extensions

More terms from James Sellers, Jul 06 2000
Definition corrected by Jonathan Sondow, Nov 27 2012