cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002600 A generalized partition function.

Original entry on oeis.org

1, 10, 25, 37, 42, 48, 79, 145, 244, 415, 672, 1100, 1722, 2727, 4193, 6428, 9658, 14478, 21313, 31304, 45329, 65311, 93074, 132026, 185413, 259242, 359395, 495839, 679175, 926064, 1254360, 1691753, 2268267, 3028345, 4021954, 5320139, 7003154
Offset: 1

Views

Author

Keywords

References

  • Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(6, t)), x, 1+max(6, t)), x, max(6, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009
  • Mathematica
    J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[6, t]], {x, 0, Max[6, t]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jul 20 2009