cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362644 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of permutations of an n-set with k permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 8, 5, 1, 1, 1, 5, 17, 28, 7, 1, 1, 1, 6, 34, 159, 96, 11, 1, 1, 1, 7, 61, 888, 2655, 495, 15, 1, 1, 1, 8, 105, 4521, 76854, 88885, 2919, 22, 1, 1, 1, 9, 170, 20916, 1882581, 15719714, 4255594, 22024, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set. Each permutation can be considered to be a set of disjoint directed cycles whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the permutations in the multiset.

Examples

			Array begins:
====================================================================
n/k| 0  1    2       3          4             5                6 ...
---+----------------------------------------------------------------
0  | 1  1    1       1          1             1                1 ...
1  | 1  1    1       1          1             1                1 ...
2  | 1  2    3       4          5             6                7 ...
3  | 1  3    8      17         34            61              105 ...
4  | 1  5   28     159        888          4521            20916 ...
5  | 1  7   96    2655      76854       1882581         39122096 ...
6  | 1 11  495   88885   15719714    2271328951     274390124129 ...
7  | 1 15 2919 4255594 5341866647 5387750530872 4530149870111873 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A000041, A362645, A362646.
Rows n=3 is A002626.
Main diagonal is A362647.
Cf. A362648.

Programs

  • PARI
    B(n,k) = {n!*k^n}
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
    R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s += permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)}

Formula

T(0,k) = T(1,k) = 1.

A259325 Infinite square array T(n,k) read by antidiagonals, defined by T(n,k) = T(n,k-1)+T(n-k,k), T(0,k)=1 (n >= 0, k >= 1).

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 1, 3, 8, 13, 1, 3, 8, 16, 22, 1, 3, 8, 17, 30, 34, 1, 3, 8, 17, 33, 50, 50, 1, 3, 8, 17, 34, 58, 80, 70, 1, 3, 8, 17, 34, 61, 97, 120, 95
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Examples

			The first few antidiagonals are:
1
1,3,
1,3,7
1,3,8,13
1,3,8,16,22
1,3,8,17,30,34
1,3,8,17,33,50,50
1,3,8,17,34,58,80,70
1,3,8,17,34,61,97,120,95
...
		

Crossrefs

Columns give A002623, A002624, A002625, A002626.
Showing 1-2 of 2 results.