A002635 Number of partitions of n into 4 squares.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 3, 3, 3, 2, 2, 2, 1, 3, 4, 2, 4, 3, 3, 2, 2, 3, 4, 3, 2, 4, 2, 2, 2, 4, 5, 3, 5, 3, 5, 3, 1, 4, 5, 3, 3, 4, 3, 4, 2, 4, 6, 4, 4, 4, 5, 2, 3, 5, 5, 5, 5, 4, 4, 3, 2, 6, 7, 4, 5, 5, 5, 4, 2, 5, 9, 5, 3, 5, 4, 3, 1, 6, 7, 6, 7, 5, 7, 5, 3, 6, 7, 4
Offset: 0
Examples
1: 1000; 2: 1100; 3:1110; 4: 2000 and 1111; 5: 2100; 6: 2110; 7: 2111; 8: 2200; 9: 3000 and 2210; 10: 3100 and 2211; etc.
References
- G. Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- E. Grosswald, The Problem of the Uniqueness of Essentially Distinct Representations, in Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 84.
- D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302.
- Gino Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian). Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15. Also D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301-302. [Annotated scanned copies]
- M. D. Hirschhorn, Some formulas for partitions into squares, Discrete Math, 211 (2000), pp. 225-228.
- James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
- Index entries for sequences related to sums of squares
Crossrefs
Programs
-
Haskell
a002635 = p (tail a000290_list) 4 where p ks'@(k:ks) c m = if m == 0 then 1 else if c == 0 || m < k then 0 else p ks' (c - 1) (m - k) + p ks c m -- Reinhard Zumkeller, Jul 13 2014
-
Mathematica
Length[PowersRepresentations[ #, 4, 2]] & /@ Range[0, 107] (* Ant King, Oct 19 2010 *)
-
PARI
for(n=1,100,print1(sum(a=0,n,sum(b=0,a,sum(c=0,b,sum(d=0,c,if(a^2+b^2+c^2+d^2-n,0,1))))),","))
-
PARI
a(n)=local(c=0); if(n>=0, forvec(x=vector(4,k,[0,sqrtint(n)]),c+=norml2(x)==n,1)); c
Comments