cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002635 Number of partitions of n into 4 squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 3, 3, 3, 2, 2, 2, 1, 3, 4, 2, 4, 3, 3, 2, 2, 3, 4, 3, 2, 4, 2, 2, 2, 4, 5, 3, 5, 3, 5, 3, 1, 4, 5, 3, 3, 4, 3, 4, 2, 4, 6, 4, 4, 4, 5, 2, 3, 5, 5, 5, 5, 4, 4, 3, 2, 6, 7, 4, 5, 5, 5, 4, 2, 5, 9, 5, 3, 5, 4, 3, 1, 6, 7, 6, 7, 5, 7, 5, 3, 6, 7, 4
Offset: 0

Views

Author

Keywords

Comments

a(A124978(n)) = n; a(A006431(n)) = 1; a(A180149(n)) = 2; a(A245022(n)) = 3. - Reinhard Zumkeller, Jul 13 2014

Examples

			1: 1000; 2: 1100; 3:1110; 4: 2000 and 1111; 5: 2100; 6: 2110; 7: 2111; 8: 2200; 9: 3000 and 2210; 10: 3100 and 2211; etc.
		

References

  • G. Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 7-15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equivalent sequences for other numbers of squares: A010052 (1), A000161 (2), A000164 (3), A000174 (5), A000177 (6), A025422 (7), A025423 (8), A025424 (9), A025425 (10).

Programs

  • Haskell
    a002635 = p (tail a000290_list) 4 where
    p ks'@(k:ks) c m = if m == 0 then 1 else
    if c == 0 || m < k then 0 else p ks' (c - 1) (m - k) + p ks c m
    -- Reinhard Zumkeller, Jul 13 2014
  • Mathematica
    Length[PowersRepresentations[ #, 4, 2]] & /@ Range[0, 107] (* Ant King, Oct 19 2010 *)
  • PARI
    for(n=1,100,print1(sum(a=0,n,sum(b=0,a,sum(c=0,b,sum(d=0,c,if(a^2+b^2+c^2+d^2-n,0,1))))),","))
    
  • PARI
    a(n)=local(c=0); if(n>=0, forvec(x=vector(4,k,[0,sqrtint(n)]),c+=norml2(x)==n,1)); c