cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002650 Quintan primes: p = (x^5 + y^5)/(x + y).

Original entry on oeis.org

11, 61, 181, 421, 461, 521, 991, 1621, 1871, 3001, 4441, 4621, 6871, 9091, 9931, 12391, 13421, 14821, 19141, 25951, 35281, 35401, 55201, 58321, 61681, 62071, 72931, 74731, 91331, 92921, 95881, 108421, 117911, 117991, 131041, 132661, 141961
Offset: 1

Views

Author

Keywords

Comments

(x^5 + y^5)/(x + y) = x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4. - Jens Kruse Andersen, Jul 14 2014

Examples

			(3^5 + 1^5)/(3 + 1) = 61. This is prime and therefore in the sequence. - _Jens Kruse Andersen_, Jul 14 2014
		

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 2, p. 201.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002649.

Programs

  • Mathematica
    Take[Select[Union[(#[[1]]^5+#[[2]]^5)/Total[#]&/@Tuples[Range[200],2]], #>0&& PrimeQ[#]&],50] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    m=10^6; v=[]; for(x=1, (2*m)^(1/4), for(y=1, x, n=(x^5+y^5)/(x+y); if(n<=m && isprime(n), v=concat(v,n)))); vecsort(v) \\ Jens Kruse Andersen, Jul 14 2014

Extensions

More terms from Sean A. Irvine, May 08 2014