cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002653 Expansion of (theta_3(z)*theta_3(7z)+theta_2(z)*theta_2(7z))^3.

Original entry on oeis.org

1, 6, 24, 56, 114, 168, 280, 294, 444, 390, 840, 636, 1176, 1176, 1512, 1008, 1782, 2016, 1896, 2520, 3528, 2408, 3216, 2796, 4760, 3174, 5880, 4592, 6258, 4380, 5040, 6720, 7200, 6832, 10080, 7224, 8082, 7164, 12600, 7056, 14280, 11760, 12040, 9756
Offset: 0

Views

Author

Keywords

Comments

Theta series of Kleinian lattice (Z[ (-1+sqrt(-7))/2 ])^3 in 3 complex (or 6 real) dimensions.

Examples

			G.f. = 1 + 6*q + 24*q^2 + 56*q^3 + 114*q^4 + 168*q^5 + 280*q^6 + 294*q^7 + ...
		

References

  • N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. MR1722413 (2001a:11103)
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 53.

Crossrefs

Cf. A002652.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(7), 3), 44); A[1] + 6*A[2] + 24*A[3] + 56*A[4] +114*A[5] + 168*A[6] + 280*A[7];  /* Michael Somos, Nov 09 2014 */
  • Maple
    g:= (JacobiTheta3(0,z) * JacobiTheta3(0,z^7) + JacobiTheta2(0,z) * JacobiTheta2(0,z^7))^3:
    S:= series(g,z,101):
    seq(coeff(S,z,i),i=0..100); # Robert Israel, Aug 12 2020
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^7] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^7])^3, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
  • PARI
    {a(n) = local(A, t2, t3); if( n<1, n==0, A = x * O(x^n); t2 = sum(k=1, (sqrtint(4*n + 1) + 1)\2, 2*x^(k*k - k), A); t3 = sum(k=1, sqrtint(n), 2*x^(k*k), 1 + A); A = x * O(x^(n\7)); polcoeff( (t3 * subst(t3 + A, x, x^7) + x^2 * t2 * subst(t2 + A, x, x^7))^3, n))}; /* Michael Somos, Jun 03 2005 */
    
  • PARI
    {a(n) = local(A, t1, t7); if( n<0, 0, A = x * O(x^n); t1 = eta(x + A)^4; t7 = eta(x^7 + A)^4; polcoeff( (t1^2 + 13 * x * t1 * t7 + 49 * x^2 * t7^2) / (t1 * t7)^(1/4), n))}; /* Michael Somos, Mar 11 2008 */
    
  • Sage
    A = ModularForms( Gamma1(7), 3, prec=60) . basis(); (3*A[0] + 4*A[1] + 21*A[2] + 105*A[3] + 224*A[4] + 441*A[5] + 672*A[6])/4 # _Michael Somos, May 25 2014
    

Formula

G.f.: (theta_3(z)*theta_3(7*z) + theta_2(z)*theta_2(7*z))^3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) is a homogeneous degree 6 polynomial with 28 terms. - Michael Somos, Jun 03 2005
Expansion of (eta(q)^8 + 13 * eta(q)^4 * eta(q^7)^4 + 49 * eta(q^7)^8) / ( eta(q) * eta(q^7) ) in power of q. - Michael Somos, Mar 11 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (7*t)) = 7^(3/2)*(t/i)^3*f(t) where q = exp(2*Pi*i*t).