A028595 Duplicate of A002653.
1, 6, 24, 56, 114, 168, 280, 294, 444, 390, 840, 636, 1176, 1176, 1512
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + 42*q^2 + 56*q^3 + 84*q^4 + 168*q^5 + 280*q^6 + 336*q^7 + 462*q^8 + ...
A := Basis( ModularForms( Gamma1(7), 3), 44); A[1] + 42*A[3] + 56*A[4] + 84*A[5] + 168*A[6] + 280*A[7]; /* Michael Somos, Nov 09 2014 */
s = (EllipticTheta[3, 0, q] *EllipticTheta[3, 0, q^7] + EllipticTheta[2, 0, q]*EllipticTheta[2, 0, q^7])^3 - 6q*(QPochhammer[q] *QPochhammer[q^7])^3 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015, from first formula *)
{a(n) = local(A, t1, t2, t3); if( n<1, n==0, A = x * O(x^n); t1 = x * (eta(x + A) * eta(x^7 + A))^3; t2 = sum(k=1, (sqrtint(4*n + 1) + 1)\2, 2 * x^(k*k - k), A); t3 = sum(k=1, sqrtint(n), 2 * x^(k*k), 1 + A); A = x * O(x^(n\7)); polcoeff( (t3 * subst(t3 + A, x, x^7) + x^2 * t2 * subst(t2 + A, x, x^7))^3 - 6*t1, n))}; /* Michael Somos, Jun 03 2005 */
A = ModularForms( Gamma1(7), 3, prec=25) . basis(); (-21*A[0] + 4*A[1] + 21*A[2] + 105*A[3] + 224*A[4] + 441*A[5] + 672*A[6])/4 # Michael Somos, May 25 2014
a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 4], n, 1)))^4, n); \\ Jinyuan Wang, Feb 21 2020
Comments