cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002660 a(n) = Sum_{d|n, d <= 3} d^2 + 3*Sum_{d|n, d>3} d.

Original entry on oeis.org

1, 5, 10, 17, 16, 32, 22, 41, 37, 50, 34, 80, 40, 68, 70, 89, 52, 113, 58, 122, 94, 104, 70, 176, 91, 122, 118, 164, 88, 212, 94, 185, 142, 158, 142, 269, 112, 176, 166, 266, 124, 284, 130, 248, 232, 212, 142, 368, 169, 275, 214, 290, 160, 356, 214, 356, 238, 266, 178, 500, 184, 284, 310, 377, 250, 428, 202, 374, 286
Offset: 1

Views

Author

Keywords

References

  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242639.

Programs

  • Maple
    with(numtheory):
    A:=proc(s,n) local d,s1,s2;
    s1:=0; s2:=0;
    for d in divisors(n) do
    if d <= s then s1:=s1+d^2 else s2:=s2+d; fi;  od:
    s1+s*s2; end;
    f:=s->[seq(A(s,n),n=1..80)]; f(3);
  • Mathematica
    a[n_] := DivisorSum[n, If[# <= 3, #^2, 3 #]&];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (d<=3, d^2) + 3*if (d>3, d)); \\ Michel Marcus, Mar 09 2023

Formula

Conjectured: Inverse Moebius transform of g.f.: (x + 2x^2 + 2x^3 - 2x^4) / (1 - x)^2. - Sean A. Irvine, May 16 2014
a(n) = 3 * sigma(n) - k, where k = 4 if n is even and k = 2 if n is odd. - Sean A. Irvine, May 16 2014

Extensions

Entry revised by N. J. A. Sloane, May 21 2014