cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002665 Continued fraction expansion of Lehmer's constant.

Original entry on oeis.org

0, 1, 1, 2, 5, 34, 985, 1151138, 1116929202845, 1480063770341062927127746, 1846425204836010506550936273411258268076151412465
Offset: 0

Views

Author

Keywords

Examples

			0.592632718201636... = 0 + 1/(1 + 1/(1 + 1/(2 + 1/(5 + ...)))). - _Harry J. Smith_, May 14 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030125 (decimal expansion).
Starting with n=2, a(n)/a(n-2) are in A096407.

Programs

  • Mathematica
    digits = 1200; c[0] = 0; c[n_] := c[n] = c[n-1]^2 + c[n-1] + 1; LC[m_] := LC[m] = Cot[Sum[(-1)^k*ArcCot[c[k]], {k, 0, m}]] // N[#, digits+10]&; LC[10]; LC[m = 20]; While[Abs[LC[m] - LC[m-10]] > 10^-digits, m = m+10]; ContinuedFraction[LC[m]] (* Jean-François Alcover, Oct 08 2013 *)
  • PARI
    default(realprecision, 2000);b=0.;
    Lehmers=1/tan(suminf(k=1,b=b^2+b+1;(-1)^k*atan(1/b))+Pi/2);
    x=contfrac(Lehmers);
    for (n=1, 13, write("b002665.txt", n-1, " ", x[n])) \\ Harry J. Smith, May 14 2009; edited by Charles R Greathouse IV, Jan 21 2016

Formula

With a different offset: a(0)=1, a(1)=1, a(n+1)=(b(n)+b(n-1)+1)*a(n-1), n >= 1, b()=A002065, with b(0)=0, b(1)=1, b(2)=3, ...

Extensions

More terms from Jeffrey Shallit
First two terms inserted by Harry J. Smith, May 14 2009