cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002673 Numerators of central difference coefficients M_{3}^(2n+1).

Original entry on oeis.org

1, 1, 13, 41, 671, 73, 597871, 7913, 28009, 792451, 170549237, 19397633, 317733228541, 9860686403, 75397891, 170314355593, 2084647712458321, 29327731093, 168856464709124011, 3063310184201, 499338236699611, 535201577273701757, 23571643935246013553
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Oct 03 2019: (Start)
Numerators in the expansion of (2*sinh(x/2))^3 = x^3 + (1/8)*x^5 + (13/1920)*x^7 + (41/193536)*x^9 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^3 leads to a formula for the third central differences: f(x+3/2) - 3*f(x+1/2) + 3*f(x-1/2) - f(x-3/2) = (2*sinh(D/2))^3(f(x)) = D^3(f(x)) + (1/8)*D^5(f(x)) + (13/1920)* D^7(f(x)) + ..., where D denotes the differential operator d/dx. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs