A002674
a(n) = (2n)!/2.
Original entry on oeis.org
1, 12, 360, 20160, 1814400, 239500800, 43589145600, 10461394944000, 3201186852864000, 1216451004088320000, 562000363888803840000, 310224200866619719680000, 201645730563302817792000000, 152444172305856930250752000000, 132626429906095529318154240000000
Offset: 1
a(3) = 360, since 2(3) = 6 has exactly 3 partitions into two parts: (5,1), (4,2), (3,3). Multiplying all the parts in the partitions, we get 5! * 3 = 360. - _Wesley Ivan Hurt_, Jun 03 2013
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.33)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Ronald P. Nordgren, Compound Lucas Magic Squares, arXiv:2103.04774 [math.GM], 2021. See Table 2 p. 12.
- H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
- H. E. Salzer, Annotated scanned copy of left side of Table II.
- Eric Weisstein's World of Mathematics, Central Difference.
a(n) =
A090438(n, 2), n >= 1 (first column of (4, 2)-Stirling2 array).
-
[n*Factorial(2*n-1): n in [1..15]]; // Vincenzo Librandi, Aug 23 2013
-
seq((2*k)!/2, k=1..20); # Wesley Ivan Hurt, Aug 22 2013
-
Table[n! Pochhammer[n, n], {n, 0, 10}] (* Geoffrey Critzer, Dec 16 2009 *)
Table[(2 n)! / 2, {n, 1, 15}] (* Vincenzo Librandi, Aug 23 2013 *)
-
a(n) = (2*n)!/2; \\ Indranil Ghosh, Apr 18 2017
A002671
a(n) = 4^n*(2*n+1)!.
Original entry on oeis.org
1, 24, 1920, 322560, 92897280, 40874803200, 25505877196800, 21424936845312000, 23310331287699456000, 31888533201572855808000, 53572735778642397757440000, 108431217215972213061058560000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Delbert L. Johnson, Table of n, a(n) for n = 0..201
- S. M. Abrarov and B. M. Quine, Array numerical integration by enhanced midpoint rule, MATLAB Central file ID #: 71037.
- H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables. [Note that there is a mistake in the definition of this sequence on line 2 of page 164.]
- H. E. Salzer, Annotated scanned copy of left side of Table I.
- Eric Weisstein's World of Mathematics, Central Difference.
- Index to divisibility sequences.
A bisection of
A002866 and (apart from initial term) also a bisection of
A007346.
A002672
Denominators of central difference coefficients M_{3}^(2n+1).
Original entry on oeis.org
1, 8, 1920, 193536, 154828800, 1167851520, 892705701888000, 1428329123020800, 768472460034048000, 4058540589291090739200, 196433364521688791777280000, 5957759187690780937420800000, 30447485794244997427545243648000000, 341011840895543971188506728857600000
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A002675
Numerators of coefficients for central differences M_{4}^(2*n).
Original entry on oeis.org
1, 1, 1, 17, 31, 1, 5461, 257, 73, 1271, 60787, 241, 22369621, 617093, 49981, 16843009, 5726623061, 7957, 91625968981, 61681, 231927781, 50991843607, 499069107643, 4043309297, 1100586419201, 5664905191661, 1672180312771
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
gf := (sinh(2*sqrt(x)) - 2*sinh(sqrt(x)))*sqrt(x):
ser := series(gf, x, 40): seq(numer(coeff(ser,x,n)), n=2..28); # Peter Luschny, Oct 05 2019
A002677
Denominators of coefficients for central differences M_{3}'^(2*n+1).
Original entry on oeis.org
1, 4, 40, 12096, 604800, 760320, 217945728000, 697426329600, 16937496576000, 30964207376793600, 187333454629601280000, 111407096483020800000, 1814811575069725360128000000, 10162944820390462016716800000
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
gf := (sinh(2*sqrt(x)) - 2*sinh(sqrt(x)))/sqrt(x): ser := series(gf, x, 20):
seq(denom(coeff(ser, x, n)), n=1..14); # Peter Luschny, Oct 05 2019
A002676
Denominators of coefficients for central differences M_{4}^(2*n).
Original entry on oeis.org
1, 6, 80, 30240, 1814400, 2661120, 871782912000, 3138418483200, 84687482880000, 170303140572364800, 1124000727777607680000, 724146127139635200000, 12703681025488077520896000000, 76222086152928465125376000000, 1531041037877004667453440000000
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
gf := 6 - 8*cosh(sqrt(x)) + 2*cosh(2*sqrt(x)): ser := series(gf, x, 40):
seq(denom(coeff(ser,x,n)), n=2..16); # Peter Luschny, Oct 05 2019
A323993
Numerators of central difference coefficients M_{5}^(2n+1).
Original entry on oeis.org
1, 5, 23, 227, 631
Offset: 2
A323994
Denominators of central difference coefficients M_{5}^(2n+1).
Original entry on oeis.org
1, 24, 1152, 193536, 13271040
Offset: 2
Showing 1-8 of 8 results.
Comments