A002676 Denominators of coefficients for central differences M_{4}^(2*n).
1, 6, 80, 30240, 1814400, 2661120, 871782912000, 3138418483200, 84687482880000, 170303140572364800, 1124000727777607680000, 724146127139635200000, 12703681025488077520896000000, 76222086152928465125376000000, 1531041037877004667453440000000
Offset: 2
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
- H. E. Salzer, Annotated scanned copy of left side of Table II.
- E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
Programs
-
Maple
gf := 6 - 8*cosh(sqrt(x)) + 2*cosh(2*sqrt(x)): ser := series(gf, x, 40): seq(denom(coeff(ser,x,n)), n=2..16); # Peter Luschny, Oct 05 2019
Formula
a(n) = denominator(4! * m(4, 2 * n) / (2 * n)!) where m(k, q) is defined in A002672. - Sean A. Irvine, Dec 20 2016
Extensions
More terms from Sean A. Irvine, Dec 20 2016
Comments