cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002721 Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) with entries satisfying 0 <= M_ijk <= n and all line sums equal to n.

Original entry on oeis.org

1, 12, 132, 847, 3921, 14506, 45402, 124707, 308407, 699766, 1477686, 2936517, 5540107, 9993192, 17333536, 29048541, 47220357, 74703832, 115341952, 174223731, 257989821, 375191422, 536708382, 756232687, 1050823851, 1441543026, 1954172962
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) satisfying Sum_i M_ijk = n (all j,k), Sum_j M_ijk = n (all i,k), Sum_k M_ijk = n (all i,j) and 0 <= M_ijk <= n.
The constraints imply that Sum_{i,j,k} M_ijk = 9n.
This is a "magic cube" in Stanley's notation (see Stanley references). - N. J. A. Sloane, Jul 07 2014

Examples

			Comment from _N. J. A. Sloane_, Jul 06 2014: (Start)
Here are four of the twelve arrays showing that a(1) = 12 (each row shows top face, middle face, bottom face):
 -----------
 100 010 001
 010 001 100
 001 100 010
 -----------
 100 001 010
 010 100 001
 001 010 100
 -----------
 001 010 100
 010 100 001
 100 001 010
 -----------
 001 100 010
 010 001 100
 100 010 001
 -----------
Each face must show one of the six 3 X 3 permutation matrices. There are 6 choices for the top face, and for each of these there are two choices for the second face and the third face is then determined, for a total of a(1)=6*2*1=12. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, Second Edition, Section 4.6.1.

Crossrefs

See A001496 for the two-dimensional 4 X 4 analog. Cf. also A002817.

Programs

  • Magma
    [(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+4272)+1 : n in [0..30] ]; // Wesley Ivan Hurt, Jul 01 2014
  • Maple
    A002721:=n->(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+ 4272)+1: seq(A002721(n), n=0..30); # Wesley Ivan Hurt, Jul 01 2014
  • Mathematica
    CoefficientList[Series[-(x^8 + 3*x^7 + 60*x^6 + 7*x^5 + 168*x^4 + 7*x^3 + 60*x^2 + 3*x + 1)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 01 2014 *)
  • PARI
    Vec(-(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jul 01 2014
    

Formula

a(n) = (1/4032) * m * (m * (m * (31 * m + 1004) + 6820) + 4272) + 1, where m = n*(n+1) (from the Bell reference). - Sean A. Irvine, Jul 01 2014
G.f.: -(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1) / (x-1)^9. - Colin Barker, Jul 01 2014

Extensions

More terms from Sean A. Irvine, Jul 01 2014
Edited by N. J. A. Sloane, Jul 06 2014