cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002731 Numbers k such that (k^2 + 1)/2 is prime.

Original entry on oeis.org

3, 5, 9, 11, 15, 19, 25, 29, 35, 39, 45, 49, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 121, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 195, 199, 201, 205, 209, 219, 221, 231, 245, 261, 271, 275, 279, 289, 299, 309, 315, 321, 325, 329, 335, 345, 349, 371, 375, 379, 391, 399, 405
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Feb 24 2012: (Start)
a(n) = sqrt(8*A129307(n)+1) = sqrt(2*A027862(n)-1), n >= 1.
a(n) is the nontrivial solution of the congruence a(n)^2 == 1 (Modd A027862(n)). The trivial one is +1. For Modd n see a comment on A203571. E.g., a(3)^2 = 81 == 1 (Modd 41), see a comment on A027862.
(End)

References

  • L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 24.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A027861. A027862 gives primes, A091277 gives prime indices.

Programs

  • Haskell
    a002731 n = a002731_list !! (n-1)
    a002731_list = filter ((== 1) . a010051 . a000982) [1, 3 ..]
    -- Reinhard Zumkeller, Jul 13 2014
  • Magma
    [n: n in [3..410] | IsPrime((n^2+1) div 2) ]; // Vincenzo Librandi, Sep 25 2012
    
  • Mathematica
    Select[Range[400], PrimeQ[(#^2 + 1)/2] &] (* Alonso del Arte, Feb 24 2012 *)
  • PARI
    forstep(n=1,10^3,2, if(isprime((n^2+1)/2),print1(n,", ")));
    /* Joerg Arndt, Sep 02 2012 */
    

Formula

a(n) = 2*A027861(n) + 1.