A002759 Number of bipartite partitions of n white objects and 10 black ones.
42, 139, 392, 907, 1941, 3804, 7128, 12693, 21893, 36535, 59521, 94664, 147794, 226524, 342006, 508866, 747753, 1085635, 1559725, 2218272, 3126541, 4368724, 6056705, 8333955, 11388614, 15460291, 20859497, 27979454, 37324367, 49529018
Offset: 0
Keywords
References
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..200 from Alois P. Heinz)
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)
Programs
-
Mathematica
p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; a[n_] := b[p^n*q^10, p^n*q^10]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *) nmax = 50; CoefficientList[Series[(42 + 55*x + 72*x^2 + 68*x^3 + 55*x^4 + 22*x^5 - 21*x^6 - 72*x^7 - 126*x^8 - 178*x^9 - 222*x^10 - 203*x^11 - 169*x^12 - 81*x^13 + 15*x^14 + 125*x^15 + 209*x^16 + 286*x^17 + 303*x^18 + 299*x^19 + 219*x^20 + 107*x^21 - 4*x^22 - 117*x^23 - 208*x^24 - 263*x^25 - 257*x^26 - 232*x^27 - 151*x^28 - 69*x^29 + 29*x^30 + 92*x^31 + 130*x^32 + 145*x^33 + 143*x^34 + 97*x^35 + 48*x^36 - 2*x^37 - 39*x^38 - 48*x^39 - 58*x^40 - 41*x^41 - 31*x^42 - 19*x^43 - 4*x^44 + 19*x^45 + 21*x^46 + 20*x^47 + 13*x^48 - 4*x^49 - 9*x^50 - 10*x^51 + 2*x^52 + 4*x^53 - x^54)/((1-x) * (1-x^2) * (1-x^3) * (1-x^4) * (1-x^5) * (1-x^6) * (1-x^7) * (1-x^8) * (1-x^9) * (1-x^10)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)
Formula
a(n) ~ sqrt(3) * n^4 * exp(Pi*sqrt(2*n/3)) / (5600*Pi^10). - Vaclav Kotesovec, Feb 01 2016
Extensions
Edited by Christian G. Bower, Jan 08 2004
Comments