A002772 Number of terms in a bordered skew determinant.
2, 6, 22, 101, 546, 3502, 25586, 214062, 1987516, 20599076, 232482372, 2876191276, 38228128472, 549706132536, 8408517839416, 137788390312712, 2383879842920976, 43846851982943152, 846470648320690736, 17266870434276713616, 367937854493289655072
Offset: 2
Keywords
References
- T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.
- T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 4, p. 278.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359. [Annotated scan of pages 354-357 only]
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923, Vol. 4.
Formula
a(n) = (n-1)! * Sum_{k=0..n-1} A002771(k) / k! with the understanding that A002771(0) = 1. - Sean A. Irvine, Aug 18 2014
Extensions
More terms from Sean A. Irvine, Aug 18 2014