cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002799 Number of 4-line partitions of n (i.e., planar partitions of n with at most 4 lines).

Original entry on oeis.org

1, 1, 3, 6, 13, 23, 45, 78, 141, 239, 409, 674, 1116, 1794, 2882, 4544, 7131, 11031, 16983, 25844, 39124, 58680, 87538, 129578, 190830, 279140, 406334, 588026, 847034, 1213764, 1731780, 2459244, 3478185, 4898285, 6872041, 9603356, 13372607, 18553871, 25656865
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there is one sort of part 1, two sorts of part 2, three sorts of part 3, and four sorts of every other part. - Joerg Arndt, Mar 15 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^3*(1-x^2)^2*(1-x^3)/(&*[1-x^j: j in [1..2*m]] )^4 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(n<5,n,4)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Min[#, 4]&]; Join[{1}, Table[a[n], {n, 1, 38}]] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[(1-x)^3 * (1-x^2)^2 * (1-x^3) * Product[1/(1-x^k)^4, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Oct 28 2015 *)
  • PARI
    x='x+O('x^66); r=4; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r ) \\ Joerg Arndt, May 01 2013
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(50)
    s = (1-x)^3*(1-x^2)^2*(1-x^3)/prod(1-x^j for j in (1..60))^4
    s.coefficients() # G. C. Greubel, Dec 06 2018

Formula

Euler transform of 1, 2, 3, 4, 4, 4, ...
G.f.: (1-x)^3 * (1-x^2)^2 * (1-x^3) / Product_{k>=1} (1-x^k)^4. - Joerg Arndt, May 01 2013
a(n) ~ 2^(13/4) * Pi^6 * exp(2*Pi*sqrt(2*n/3)) / (3^(13/4) * n^(19/4)). - Vaclav Kotesovec, Oct 28 2015

Extensions

Edited and extended with formula by Christian G. Bower, Jan 01 2004
a(0)=1 prepended by Joerg Arndt, May 01 2013
Offset corrected by Vaclav Kotesovec, Oct 28 2015