A002815 a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
0, 1, 3, 6, 9, 13, 17, 22, 27, 32, 37, 43, 49, 56, 63, 70, 77, 85, 93, 102, 111, 120, 129, 139, 149, 159, 169, 179, 189, 200, 211, 223, 235, 247, 259, 271, 283, 296, 309, 322, 335, 349, 363, 378, 393, 408, 423, 439, 455, 471
Offset: 0
References
- H. Brocard, Reply to Query 1421, Nombres premiers dans une suite de différences, L'Intermédiaire des Mathématiciens, 7 (1900), 135-137.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a002815 0 = 0 a002815 n = a046992 n + toInteger n -- Reinhard Zumkeller, Feb 25 2012
-
Mathematica
Table[n + Sum[PrimePi[k], {k, 1, n}], {n, 0, 50}] Module[{nn=50,pp},pp=Accumulate[PrimePi[Range[0,nn]]];Total/@ Thread[ {Range[ 0,nn],pp}]] (* This program is significantly faster than the program above. *) (* Harvey P. Dale, Jan 03 2013 *)
-
PARI
a(n) = my(p=primes([0,n])); n + (n+1)*#p - vecsum(p); \\ Ruud H.G. van Tol, Feb 16 2024
-
Python
from sympy import primerange def A002815(n): return n+(n+1)*len(p:=list(primerange(n+1)))-sum(p) # Chai Wah Wu, Jan 01 2024
Formula
a(n) = A046992(n) + n for n > 0. - Reinhard Zumkeller, Feb 25 2012
Conjectured g.f.: (Sum_{N>=1} x^A008578(N))/(1-x)^2 = (x + x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + ...)/(1-x)^2. - L. Edson Jeffery, Nov 25 2013