cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002815 a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.

Original entry on oeis.org

0, 1, 3, 6, 9, 13, 17, 22, 27, 32, 37, 43, 49, 56, 63, 70, 77, 85, 93, 102, 111, 120, 129, 139, 149, 159, 169, 179, 189, 200, 211, 223, 235, 247, 259, 271, 283, 296, 309, 322, 335, 349, 363, 378, 393, 408, 423, 439, 455, 471
Offset: 0

Views

Author

Keywords

References

  • H. Brocard, Reply to Query 1421, Nombres premiers dans une suite de différences, L'Intermédiaire des Mathématiciens, 7 (1900), 135-137.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002815 0 = 0
    a002815 n = a046992 n + toInteger n  -- Reinhard Zumkeller, Feb 25 2012
    
  • Mathematica
    Table[n + Sum[PrimePi[k], {k, 1, n}], {n, 0, 50}]
    Module[{nn=50,pp},pp=Accumulate[PrimePi[Range[0,nn]]];Total/@ Thread[ {Range[ 0,nn],pp}]] (* This program is significantly faster than the program above. *) (* Harvey P. Dale, Jan 03 2013 *)
  • PARI
    a(n) = my(p=primes([0,n])); n + (n+1)*#p - vecsum(p); \\ Ruud H.G. van Tol, Feb 16 2024
  • Python
    from sympy import primerange
    def A002815(n): return n+(n+1)*len(p:=list(primerange(n+1)))-sum(p) # Chai Wah Wu, Jan 01 2024
    

Formula

a(n) = A046992(n) + n for n > 0. - Reinhard Zumkeller, Feb 25 2012
Conjectured g.f.: (Sum_{N>=1} x^A008578(N))/(1-x)^2 = (x + x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + ...)/(1-x)^2. - L. Edson Jeffery, Nov 25 2013