cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002825 Number of precomplete Post functions.

Original entry on oeis.org

1, 2, 9, 40, 355, 11490, 7758205, 549758283980, 10626621620680257450759, 1701411834605079120446041612344662275078, 79607061350691085453966118726400345961810854094316840855510985234351715774913
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 1969 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -n-2+(-1)^(n-1) Sum[(-1)^k Binomial[n, k] Sum[2^Binomial[ k, j], {j, 0, k}], {k, 0, n-1}];
    Array[a, 11] (* Jean-François Alcover, Aug 19 2018 *)
  • PARI
    a(n) = if (n==1, 1, -n - 2 + (-1)^(n-1) * sum(k=0, n-1, (-1)^k * binomial(n, k) * sum(j=0, k, (2^binomial(k, j))))); \\ Michel Marcus, Aug 25 2014

Formula

a(1) = 1. a(n) = -n - 2 + (-1)^(n-1) * Sum_{k=0..n-1} ((-1)^k * binomial(n, k) * Sum_{j=0..k} 2^binomial(k, j)), n > 1. - Sean A. Irvine, Aug 24 2014

Extensions

More terms from Sean A. Irvine, Aug 24 2014