cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002830 Number of 3-edge-colored trivalent graphs with 2n nodes.

Original entry on oeis.org

1, 1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330, 2403140605, 52655943500, 1260724587515, 32726520985365, 915263580719998, 27432853858637678, 877211481667946811, 29807483816421710806, 1072542780403547030073, 40739888428757581326987
Offset: 0

Views

Author

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
    b[k_, q_] := If[OddQ[q], If[OddQ[k], 0, j = k/2; q^j (2 j)!/(j! 2^j)], Sum[ Binomial[k, 2 j] q^j (2 j)!/(j! 2^j), {j, 0, Quotient[k, 2]}]];
    pm[v_] := Module[{p = Total[x^v]}, Product[b[Coefficient[p, x, i], i], {i, 1, Exponent[p, x]}]];
    a[n_] := Module[{s = 0}, Do[s += permcount[p] pm[p]^3, {p, IntegerPartitions[2 n]}]; s/(2 n)!];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 30}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
  • PARI
    b(k,r) = {if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    g(n,k)={sum(r=0, n\k,  x^(k*r)*b(k,r)^3/(r!*k^r)) + O(x*x^n)}
    seq(n)={Vec(substpol(prod(k=1, 2*n, g(2*n,k)), x^2, x))} \\ Andrew Howroyd, Dec 14 2017; updated May 02 2023

Formula

G.f.: exp(Sum_{k >= 1} F(x^k) / k) where F(x) is the g.f. for A002831. - Sean A. Irvine, Sep 09 2014

Extensions

a(7)-a(8) from Sean A. Irvine, Sep 08 2014
Terms a(9) and beyond from Andrew Howroyd, Dec 14 2017
a(0)=1 prepended by Andrew Howroyd, May 02 2023