cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002890 Low temperature series for spin-1/2 Ising partition function on 2D square lattice.

Original entry on oeis.org

1, 0, 1, 2, 5, 14, 44, 152, 566, 2234, 9228, 39520, 174271, 787246, 3628992, 17019374, 81011889, 390633382, 1905134695, 9385453576, 46653815395, 233788460256, 1180111379105, 5996452414310, 30653752894948
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002891.

Programs

  • Mathematica
    (* For 25 terms, a PC computation lasts less than half an hour *) m = 48 (* max y exponent *); coes = CoefficientList[ Series[ Log[(1 + y^2)^2 - 2*y*(1 - y^2)*(Cos[2*Pi*u] + Cos[2*Pi*v])], {y, 0, m}], y] // Rest; nint[f_, {n_}] := If[n == 2 || OddQ[n], 0, Print[n]; Integrate[ Integrate[f, {u, 0, 1}], {v, 0, 1}]]; fy = MapIndexed[nint, coes].Table[y^k, {k, 1, m}]; CoefficientList[ Series[ Exp[fy/2], {y, 0, m}] , y^2] (* Jean-François Alcover, Mar 19 2013 *)
    CoefficientList[(1+u) Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16x] /. {x -> (u (1 - u)^2)/(1 + u)^4}] + O[u]^50, u] (* Andrey Zabolotskiy, Feb 12 2022, using the g. f. from Gandhimohan M. Viswanathan, 2014-2015 *)

Formula

a(n) ~ exp(2*G/Pi) * (1 + sqrt(2))^(2*n-1) / (Pi*sqrt(2)*n^3), where G is the Catalan's constant A006752. - Vaclav Kotesovec, May 02 2024

Extensions

Corrections and updates from Steven Finch
"Free energy" changed back to "partition function" (basically the exponential of the free energy) in the name by Andrey Zabolotskiy, Feb 11 2022