A137514
A triangular sequence from umbral calculus expansion of Simon Plouffe's rational polynomial for A002890: p(x,t) = exp(x*t)*(1 - 6*t + 9*t^2 - 4*t^3 + t^4)/(4*t - 1)/(2*t - 1).
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 12, 6, 0, 1, 120, 48, 12, 0, 1, 1680, 600, 120, 20, 0, 1, 31680, 10080, 1800, 240, 30, 0, 1, 766080, 221760, 35280, 4200, 420, 42, 0, 1, 22579200, 6128640, 887040, 94080, 8400, 672, 56, 0, 1, 778014720, 203212800, 27578880, 2661120, 211680, 15120, 1008, 72, 0, 1
Offset: 1
Triangle begins:
{1},
{0, 1},
{2, 0, 1},
{12, 6, 0, 1},
{120, 48, 12, 0, 1},
{1680, 600, 120, 20, 0, 1},
{31680, 10080, 1800, 240, 30, 0, 1},
{766080, 221760, 35280, 4200, 420, 42, 0, 1},
{22579200, 6128640, 887040, 94080, 8400, 672, 56, 0, 1},
{778014720, 203212800, 27578880, 2661120, 211680, 15120, 1008, 72, 0, 1},
...
- Terrel L. Hill, Statistical Mechanics: Principles and Selected Applications, Dover, New York, 1956, page 336 ff
-
Clear[p, f, g] p[t_] = Exp[x*t]*(1 - 6*t + 9*t^2 - 4*t^3 + t^4)/(4*t - 1)/(2*t - 1); Table[ ExpandAll[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}] a = Table[ CoefficientList[n!*SeriesCoefficient[; FullSimplify[Series[p[t], {t, 0, 30}]], n], x], {n, 0, 10}]; Flatten[a]
A002891
Low temperature series for spin-1/2 Ising partition function on 3-dimensional simple cubic lattice.
Original entry on oeis.org
1, 0, 0, 1, 0, 3, -3, 15, -30, 101, -261, 807, -2308, 7065, -21171, 65337, -200934, 627249, -1962034, 6192066, -19610346, 62482527, -199807110, 641837193, -2068695927, 6691611633, -21710041944, 70645706963, -230488840446, 753903842400, -2471624380458, 8120879664294, -26736570257010
Offset: 0
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Daniel Andrén, Series expansion for the density of states of the Ising and Potts models, arXiv:0706.3116 [cond-mat.str-el], 2007.
- Steven R. Finch, Lenz-Ising Constants [broken link]
- Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
- A. J. Guttmann and I. G. Enting, Series studies of the Potts model: I. The simple cubic Ising model, J. Phys. A 26 (1993) 807-821; arXiv:hep-lat/9212032, 1992.
- A. J. Wakefield, Statistics of the simple cubic lattice, Proc. Cambridge Philos. Soc. 47 (1951) 419-435 and 799-810.
"Free energy" changed back to "partition function" (basically the exponential of the free energy) in the name by
Andrey Zabolotskiy, Feb 12 2022
a(28)-a(32) added by
Andrey Zabolotskiy, Jun 30 2022 using Andrén's data (see his Table 2, column a_n for the coefficients of the expansion of the logarithm of the g.f. of this sequence)
A002927
Low temperature series for spin-1/2 Ising magnetic susceptibility on 2D square lattice.
Original entry on oeis.org
0, 0, 1, 8, 60, 416, 2791, 18296, 118016, 752008, 4746341, 29727472, 185016612, 1145415208, 7059265827, 43338407712, 265168691392, 1617656173824, 9842665771649, 59748291677832, 361933688520940, 2188328005246304, 13208464812265559, 79600379336505560, 479025509574159232
Offset: 0
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..1305
- R. J. Baxter and I. G. Enting, Series expansions for corner transfer matrices: the square lattice Ising model, J. Stat. Physics 21 (1979) 103-123.
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- I. G. Enting, A, J. Guttmann and I. Jensen, Low-Temperature Series Expansions for the Spin-1 Ising Model, arXiv:hep-lat/9410005, 1994; J. Phys. A. 27 (1994) 6987-7005.
- J. W. Essam and M. E. Fisher, Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point, J. Chem. Phys., 38 (1963), 802-812.
- Steven R. Finch, Lenz-Ising Constants [broken link]
- Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
- Tony Guttmann, Homepage. See Numerical Data, Ising square lattice susceptibility series, Low temperature series.
- Iwan Jensen, Series for the Ising model
a(0) = a(1) = 0 prepended, terms a(20) and beyond added by
Andrey Zabolotskiy, Feb 10 2022
A029872
Low temperature series for spin-1/2 Ising specific heat on 2D square lattice.
Original entry on oeis.org
16, 72, 288, 1200, 5376, 25480, 125504, 634608, 3269680, 17086168, 90282240, 481347152, 2585485504, 13974825960, 75941188736, 414593263952, 2272626444528, 12502223573304, 68996534259040, 381858968527680, 2118806030647328, 11783826597027256, 65674579024955904
Offset: 0
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
-
CoefficientList[Series[1/(Pi*x^2*(-1 + x^2)^2) * (-2*Pi*x*(1 + x)^2 - (1 + x)^4 * EllipticE[16*(-1 + x)^2*x/(1 + x)^4] + (1 + 30*x^2 + x^4) * EllipticK[16*(-1 + x)^2*x/(1 + x)^4]), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 28 2024 *)
A370953
Numerators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.
Original entry on oeis.org
1, 1, 4, 77, 1009, 101627, 1302779, 2513121979, 11291682179, 1354947005798, 23064317580681848, 20189102649892270054, 776220757551441546419, 641273428219629914673014, 5433381672262390009892530636, 1399751922597075578762073697769
Offset: 0
-
CoefficientList[With[{nmax = 7}, Exp[-Log[2]/2 + 1/(2 Pi) Integrate[Log[Cosh[2k]^2 + Sqrt[Sinh[2k]^4 + 1 - 2 Sinh[2k]^2 Cos[2\[Theta]] + O[k]^(2nmax+1)]], {\[Theta], 0, Pi}] + O[k]^(2nmax+1)]], k][[;; ;; 2]] // Numerator (* Andrey Zabolotskiy, Mar 10 2024 *)
CoefficientList[Cosh[2k] Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16x] /. {x -> (Sinh[2k]/(2Cosh[2k]^2))^2}] + O[k]^32, k][[;; ;; 2]] // Numerator (* Andrey Zabolotskiy, Mar 13 2024, using the g. f. from Gandhimohan M. Viswanathan *)
A370955
Coefficients of the partition function per spin, x(k) (divided by 2), in the low temperature region, expressed as a power series in the parameter k^2, for the spin-1/2 Ising model on square lattice.
Original entry on oeis.org
1, -1, -4, -29, -265, -2745, -30773, -364315, -4488749, -57020414, -741999700, -9845906898, -132774990781, -1814964497342, -25098172218816, -350548840292011, -4938909144117611, -70118741489312657, -1002259422501603334, -14412940220878338617, -208393139882994584383
Offset: 0
-
CoefficientList[Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16 x]] + O[x]^20, x] (* Andrey Zabolotskiy, Mar 10 2024, using the g. f. from Gandhimohan M. Viswanathan *)
A260784
Coefficients in a certain low-temperature series expansion.
Original entry on oeis.org
0, 24, 1440, 181440, 43545600, 17882726400, 11333177856000, 10257397742592000, 12540115964952576000, 19887027595237490688000, 39679473692005106319360000, 97249082487667949725286400000, 287164491478121796028858368000000, 1005464789964467723115455053824000000
Offset: 1
- Vaclav Kotesovec, Table of n, a(n) for n = 1..196
- Grzegorz Siudem, Agata Fronczak, Bell polynomials in the series expansions of the Ising model, arXiv:2007.16132 [math-ph], 2020.
- G. Siudem, A. Fronczak, P. Fronczak, Exact low-temperature series expansion for the partition function of the two-dimensional zero-field s= 1/2 Ising model on the infinite square lattice, arXiv preprint arXiv:1410.7963, 2014. See equations (8) and (11).
-
A260784 := proc(n)
local a,d1,d2,d3,d4,d33half ;
a := 0 ;
for d2 from 0 do
if 2*d2 > n then
break;
end if;
for d3 from 0 do
if 2*d2 +3*d3 > n then
break;
end if;
for d4 from 0 do
if 2*d2 +3*d3+4*d4 > n then
break;
end if;
d1 := n-2*d2-3*d3-4*d4 ;
if d1 >= 0 and type(d1+d3,'even') then
d13half := (d1+d3)/2 ;
a := a+(d1+d2+d3+d4)!/d1!/d2!/d3!/d4!*(-1)^(d2+d3+d4-1)*2^d2
/(d1+d2+d3+d4)*binomial(d1+d3,d13half)^2 ;
end if;
end do:
end do:
end do:
a*n!/2 ;
end proc:
seq(A260784(2*n),n=1..15) ; # R. J. Mathar, Aug 27 2015
-
"Listing 1" in Siudem et al. (2014) gives Mathematica code for the fractions a(n)/(2n)!.
Showing 1-7 of 7 results.
Comments